
ADAM Architecture Speci�cation

by

Andrew “bunnie” Huang

October 1, 2001

Revised April 9, 2002

DRAFT

2

Contents

1 Aries Decentralized Abstract Machine Specification 9

1.1 Overview . 9

1.2 Programming Model . 10

1.2.1 Threads . 10

1.2.2 Data Types . 12

1.2.3 Instruction Formats . 15

1.2.4 Memory Model . 17

1.2.5 Über-Capability. 21

1.2.6 Exception Handling . 21

1.2.7 Status and Mode Register . 23

1.2.8 Thread and Class File Format . 23

1.3 Issues . 23

A Opcodes 25

A.1 General Notes . 25

A.2 Lazy Instructions . 25

A.3 Instruction Summary . 26

A.4 To do: . 28

3

4

List of Figures

1-1 Structure of an ADAM thread . 11

1-2 Pieces of an ADAM implementation. Node ID tags are uniform across the machine, so

network-attached custom hardware is addressible like any processor or memory node. 12

1-3 Programming model of ADAM . 13

1-4 Data formats supported by ADAM . .. 14

1-5 Tag and Flag field details . 14

1-6 Format of ADAM opcodes . 16

1-7 ADAM capability format 18

1-8 Exception handling overview . 22

A-1 qb format for thePARCELinstruction . 109

5

6

List of Tables

7

8

Chapter 1

Aries Decentralized Abstract Machine

Specification

While Newton is to have said (sarcastically, in truth, but that’s another story)
that he saw farther by standing on the shoulders of giants, most of us squat
on the kneecaps of pygmies. But that is meant in the nicest possible way.

—Thomas H. Lee, ISSCC 2002 Panelist Statement

The Aries Decentralized Abstract Machine (ADAM) is a massively parallel architecture that relies on the

tight integration of processors and memory made possible by embedded memory fabrication processes. The

ADAM is a large, homogeneous machine that is easy for programmers and optimizing compilers to target,

but perhaps impractical to build. ADAM is intended to be emulated by a concrete machine with a similar

architecture that may not be homogeneous and may change with time, and may vary in capability and capacity

from machine to machine. Thus, ADAM is a bridge between the simplicity and elegance desired by software

developers and the reality of budgets, yield, and change faced by the hardware engineers.

1.1 Overview

ADAM consists of an arbitrarily (anywhere between one and one million) sized fat-tree of simple processor-

memory nodes. A single node of ADAM is similar to RISC architectures such as the Alpha and the ARM. Its

features include:

� single-issue, in-order execution instruction semantics

� 128 entry 80-bit wide queue file (64-bit data types, 16-bit tags)

� separate code, environment and data address spaces

� named-state processor context management

� support for continuation-style threads

9

� inter-thread communication via queue remapping

� hardware assisted capability-based memory addressing

� hardware assisted data tagging

� method-signature tagged instruction memory

� native support for object-oriented programming languages

� spatially aware addressing model

� support for fast data migration

� management coprocessor for thread scheduling, performance tuning, and debugging

� no need for data caches; therefore, no aliasing-related coherence problems

Without recompilation, any program targeted for the ADAM platform can run on any scale of implemen-

tation, within the limit that the virtual memory of the implementation is not exhausted. It is also a goal of

the ADAM platform that most large programs, without recompilation, will scale well in performance as the

implementation scales to more nodes.

The ADAM node is intended to be implemented in an embedded memory process. Embedded memories

have a latency and bandwidth performance on par with the caches of a typical processor; hence, no data

caches are allowed in the ADAM specification. This alleviates a host of aliasing-related coherence issues.

Embedded memories are also small, but it is the intention that even the smallest ADAM implementations

should have thousands of nodes, so that the overall amount of fast memory is big enough to hold the desired

programs in-core. In the case that the embedded memory is exhausted, secondary DRAM storage and tertiary

hard drive storage is provided through a virtual memory mechanism.

1.2 Programming Model

1.2.1 Threads

The fundamental unit of computation in ADAM is a thread. Threads are very lightweight under ADAM, and

they are opaque, monolithic memory structures. They could almost be called continuations except that they

carry just a little more state than a program counter and an enviroment pointer.

In place of registers in a typical machine, ADAM supplies queues of an unspecified depth. These queues

can assume register semantics when necessary via a copy/clobber modifier. This modifier causes dequeues

to be copies on reads, and enqueues to be clobbers on writes. The tail of any queue can be remapped onto

the head of another queue in another thread context. Note that using a clobber operator on a remapped queue

yields unpredictable results since the victim data depends upon how long it takes for the clobbering data to

arrive at the destination.

Data from any given source is guaranteed to arrive in-order in the destination context’s queue; however,

when more than one sender is mapped to a single receiver, there is no guarantee as to the ordering of the

10

text & constants

rest
of

machine

processor state
backing store

mappings and heap
pointers

capability (also thread ID) front pad & OS info

only path of visibilty
into thread

Figure 1-1: Structure of an ADAM thread

received values between the two senders. A node can request that the source ID of incoming data be enqueued

in a secondary queue in lock-step with the primary destination queue, so that ambiguity created by such a

situation can be resolved by user code. The only allowed method of inter-thread communication is via these

queue mappings. While a programmer can communicate data between threads by passing around heap-

allocated data structures, it is not recommended because ADAM has a relaxed consistency memory model

with no barrier or inter-processor memory synchronization instructions. The only guarantee is that all reads

issued after a write to the same address will return with the most recently written data by the the issuing

thread if and only if another thread has not modified that address in the meantime.

To a first approximation, the queues supplied by ADAM are of infinite depth. In a realistic implementa-

tion, the performance of the queues drops off as more data is shoveled into them. It is recommended that a

compiler or hand-assembly coder try to minimize the use ofunmappedqueues as storage elements, since the

performance of a hardware implementation may degrade rapidly if queues are used extensively as deeper-

than-1 storage elements. For light-duty operation, as typically encountered when holding temporary results

within a computation, the queues should perform as fast as a register in a standard RISC machine. However,

as a communication element between streaming threads, some flow control mechanism is required, and the

queues apply a back-pressure proportional to their fullness. The implementation and implications of this

back-pressure in an ADAM implementation are discussed later.

The address space of the machine is divided into three parts: code, environment, and data. ADAM

execution units cannot directly affect values in any address space. The code space is write-once, read many

and data is striped across all nodes; interaction between code space and user space is possible only through

the LDCODE opcode. Environment and data spaces are read-many, write-many and their address spaces

are local to each node. Environment space is where thread contexts are stored; thus, all interaction with

environment space is implicit. Data space accessed only through queue mappings in the execution unit.

A memory management coprocessor is required to handle memory requests in memory space. Figure 1-2

11

network

processor + NI

code
memory

environment
memory

memory
manager

data
memory

I/O
custom

streaming
hardware

FPGA implementation-
specific options

Figure 1-2: Pieces of an ADAM implementation. Node ID tags are uniform across the machine, so network-
attached custom hardware is addressible like any processor or memory node.

illustrates the high level situation that leads to this division of address spaces.

There is no stack in ADAM; rather, arguments and return values are passed through the queue file via

queue mappings. The backing store for the named-state queue file occupies the top part of the environment

segment for the thread. All visibility into and out of the thread occurs via a set of queue mappings that are

bidirectional.

There is one reserved thread ID on each processor node known as the kernel capability. This capability is

not accessible from any ADAM instructions, and is setup at initialization time by the management coproces-

sor. An exception causes machine execution to halt and control to be transferred to the kernel capability.

1.2.2 Data Types

All ADAM data types are 80 bits wide; they consist of a 64 bit data field and a 16 bit tag field. Four integer

data types are supported: signed long (referred to as “word”), packed signed integer, packed signed short, and

packed unicode characters. Only one floating point data type is supported, similar to the IEEE-754 double

format. See figure 1-4 for detailed bit-level formatting of the data types.

Packed data is operated on in vector form; most arithmetic operations are supported on packed data. Any

arithmetic operation involving a capability, however, is only valid with a long. Any integer type is supported

for memory queue offsets, however. Please see section 1.2.4 for more information on the ADAM memory

model.

12

...
q2

q126

q127

head data
full

tail data
empty

(depth not specified)

80-bit entries

context ID (capability)

map

Individual Queue Details:

Queue
File

status (read-only)

80 bits

kernel capability

exception capability

PC

32 bits

signature hash

64 bits

q1

q0

forwarding capability

created

resident

m
apdrop

m
apped map target + VQN

TAGS

ancestor capability

mode (write-only)

exception temporariesexception temporariesexception temporariesexception temps & args (4)

machine-managed
thread state

user-managed
thread state threadcontextstate.eps

Figure 1-3: Programming model of ADAM

All data types are fully tagged to identify their type, as well as any flags associated with their status. See

figure 1-5 for details. Errors on arithmetic operations can be forced to be trapping and non-trapping. Trapping

errors cause the thread to deadlock and an exception to be thrown; non-trapping errors allow execution to

proceed normally (which may or may not imply deadlock) and the error condition to simply be noted in the

result’s tag and flags field.

An immutable bit is also included in the tag field, to indicate static data that cannot be altered. Identifying

data as static allows management routines to copy that piece of data freely, thus enabling cheap automatic

mechanisms for distributing frequently referenced values. Writing to data that is declared as immutable has

no effect on the data, may throw an exception, and always sets a bit in the status register to indicate that an

illegal write occurred.

A primary bit is also included in each tag field that is used by the data migration manager to indicate if

this is the primary copy of the data. This is particularly useful for the scenario of partial migration, where the

primary capability containing some data has migrated but the data itself has yet to move. See chapter?? for

more details.

A subset of the IEEE 754-1985 floating point standard is required by ADAM architecture. The differences

between the IEEE 754-1985 standard and the ADAM format are chosen to simplify implementation and

enhance performance with a small reduction in precision. These differences are:

� no support for single-precision floats and its associated operations and conversions, with the exception of

13

64 bit signed integerlong data

32 bit signed integer (a)
packed
integer

data
32 bit signed integer (b)

packed
short data

16 bit signed
integer (d)

packed
char data

16 bit unicode
character (d)

16 bit signed
integer (c)

16 bit signed
integer (b)

16 bit signed
integer (a)

16 bit unicode
character (c)

16 bit unicode
character (b)

16 bit unicode
character (a)

floating
point data

52 bit mantissa ("f")
11 bit

exponent
("e")

sign
("s")

capability tag, 1 = capability, 0 = data

15 bits
tag and flags

15 bits
tag and flags

15 bits
tag and flags

15 bits
tag and flags

15 bits
tag and flags

23 bit mantissa
8 bit
exp-

onent

fp constant
(stored in

opcodes only)

32 bit signed integer
int constant
(stored in

opcodes only)

Figure 1-4: Data formats supported by ADAM

6-bit type field +
9-bit type-dependent

flags field

w
ord

pint

pshort

pchar

float

O
S

valid

overflow
.a

valid

overflow

N
aN

/
+

/- infinity

underflow

valid reserved

MSB LSB

LSB

LSB

overflow
.b

overflow
.c

overflow
.d

used only for packed types

m
utable

resvd

m
utable

resvd

m
utable

prim
ary

prim
ary

prim
ary

00 = number
01 = NaN
10 = +infinity
11 = -infinity

typeformat.eps

Figure 1-5: Tag and Flag field details

14

constant fields in opcodes

� NaN and�1 are specified in the tag field, so exponent = 2047 is now valid, and the exponent bias is now

+1024

� no denorms (accuracy versus IEEE 754-1985 reclaimed by previous bullet point)

� one rounding mode: von Neumann style rounding

To summarize, the value of the floating point number isv = (�1)s2e�1024(1:f) unlesse = 0 andf = 0,

in which case the value isv = (�1)s0 (signed zero).

Aside from these, the ADAM floating point format defers to the IEEE 754-1985 standard [Ste85]. In

particular, the handling of NaNs, Infinity, and Signed Zero in the context of Exceptions, Traps, Comparisons

and Conversions are identical.

The ADAM instruction format allows for 32-bit constants to be stored in a standard opcode. Floating

point instructions can thus store a single-precision format float in the constant field, but this is immediately

converted to a double-precision number upon use. The single precision floats likewise do away with the

denorm representation; hence, NaNs and�1 are not representable in the single-precision floating point

constant field. The value of a single precision floating point number isv = (�1)s2e�128(1:f) unlesse = 0

andf = 0, in which case the value isv = (�1)s0 (signed zero).

von Neumann style rounding is implemented by adding an LSB of precision to floats as they enter the

arithmetic pipeline and carrying this LSB of precision throughout the pipe. This extra LSB is set to a binary

“1” as numbers enter the pipe, and rounding is done by simple truncation at the end of the pipe. This results

in an expected value of the extra LSB to be1

2
at the end of the day.

An implementation may choose use to full IEEE 754-1985 style rounding to gain the extra precision, but

there is no provision in the stock architecture specification to choose which rounding mode to use; the default

and only rounding mode should thus be “round to nearest” per IEEE 754-1985.

1.2.3 Instruction Formats

ADAM has a sequestered code space. The code space, unlike the data and environment spaces, is global

and shared among all nodes; this is feasible because the code space is mostly read-only. The management

coprocessor takes care of handling any page faults or the loading and unloading of code in code space. ADAM

can dynamically request new object classes to be loaded into code space with theLDCODEinstruction.

The code space is mostly read-only because some instructions contain hint fields to the instruction

prefetcher. The actual values contained in the hint fields are implementation-dependent and any ADAM

implementation must execute code correctly regardless of the hint field’s contents; however, a compiler is

free to warm up the hint fields with bit patterns that may improve start-up performance for a specific imple-

mentation. Because there is no correctness impact upon code execution if the hint fields are wrong, instruction

caches can replace lines that have not been written back due to a lack of instruction bandwidth. Likewise,

write values do not have to propagate throughout the system even though the code is globally shared among

15

all nodes. However, in the case that values do make their way back to their original file on disk, the next time

code is loaded, it may run faster.

8 bits
opcode

7 bits
VQA

7 bits
VQB

7 bits
VQC

32 bits signed constantstandard OP

8 bits
opcode

7 bits
VQC

7 bits
VQA

32 bits signed rel. offsetbranch OP

link
(opt)

cond
(opt)

8 bits
opcode

7 bits
VQA

48 bits unsigned dest storage hintjump OP

dest

8 bits
history

hint

copy/replace tag, 1 = copy/replace, 0 = dequeue/enqueue

8 bits
opcode

48 bits hint datahint OP
8 bits
hint
type

unused

Figure 1-6: Format of ADAM opcodes

Instructions are 64 bits long and have four basic formats: standard, branch, jump, and hint (see 1-6). Every

instruction has an 8-bit opcode field. Every queue specifier in every instruction is modified by a copy/replace

bit. Setting the copy/replace tag enables the compiler to treat the queue with semantics similar to that of a

register. A copy operation extracts a value from a queue without changing any of the values in the queue;

a replace operation tests to see if a queue is empty, and if it is, waits until a value is written to it, and then

replaces the value. The replace operation is invalid on a remapped queue and attempting to perform such an

operation triggers an exception.

The standard instruction has three virtual queue specifiers, each 7 bits long. The first two (VQA and

VQB) specify read queues; the final (VQC) specifies the write queue. The standard instruction also contains

a 32-bit signed constant field, thus allowing the standard instruction to specify up to three data sources and

one data destination, although most instructions do not take full advantage of this capability.

Certain instructions, known as special-format instructions, may interpret the VQA, VQB, or VQC fields

as constants instead of as a queue to reference to extract or store data to the queue file. These instructions

typically deal with the creation, maintenance and destruction of queue maps. Since the compiler and/or

assembly language programmer typically knows at all times the exact queue number that a mapping is applied

to, it does not make sense for most queue map maintenance instructions to accept arbitrary dynamically

generated queue values. Hence, the VQA, VQB, and VQC fields can be used to immediately refer to a queue

16

number for these instructions.

Branch instructions have a condition field, a link field, a branch history hint field, and a 32-bit signed

branch offset. Either the condition or the link field may be omitted from an instruction, but not both. An 8-bit

history hint field is also provided so that a branch history can be stored with the branch instruction. Note that

the format of the hint field is implementation-specific, and that any ADAM implementation must function

correctly regardless of the hint field contents.

Jump instructions have a destination field and a 32 bit unsigned jump destination hint. Only the lower 32

bits of the value in the queue specified by the jump destination field is loaded into the program counter. The

jump destination hint field is provided so that an implementation can memoize the most recent jump address.

Note that the format of the hint field is implementation-specific, and that any ADAM implementation must

function correctly regardless of the hint field contents.

Hint instructions are no-ops that provide hints to the runtime system. The hint may or may not be platform

dependent; this information is encoded within the hint type field. Examples of hints are data placement

directives, prefetch directives, and thread yield directives. Hints that are not recognized by the run-time are

ignored.

Please consult the appendix for detailed listing of the instructions supported by ADAM and their descrip-

tions.

1.2.4 Memory Model

The ADAM uses a virtually addressed capability-based data memory model with memory striped across the

machine using an explicit node ID as part of the address. The node ID field and address field can steal bits

from each other depending upon the implementation; for the sake of concreteness, figure 1-7 uses some

“typical” field sizes. Node location coding within the address has been seen in the parallel language Sather.

The actual translation of the virtual addresses and paging mechanisms are transparent to the specification and

implementation-specific. A summary of the capability format can be seen in figure 1-7. The ADAM has no

load or store instructions; instead, data memory is an opaque object accessed only through queue mappings.

The capability format used by ADAM allows for exact base and bounds determination from an arbitrary

capability with the use of front-padding to eliminate a small amount of rounding overhead. The total padding

penalty incurred by the capability format is bounded to be less than 11.2%. Please refer to [BGKH00] for a

detailed discussion of the capability format; only a summary of the capability format and properties are given

here.

The method for extracting the base and bounds from a front-padded capability is as follows, written in

pseudo-code:

Warning: the psuedocode for capability arithmetic is known to be wrong. It is, however, implemented

correctly in the simulator. Updates pending...

B = block size field value

17

9 bits
tag

34 bit address, word aligned16 bit proc ID
15 bits base/

bounds

1 bit capability
tag

capability

environment / data
valid
primary
marked
read
write
uncopyable
owner
increment-only

6 bits block
size

exponent

4 bits
length

5 bits
finger

5 bit
SQUID

Figure 1-7: ADAM capability format

L = length field value

F = finger field value

A = address field value

if(B == 63) f

// L, B are immutable

// A and F are updated by capability arithmetic ops,

// with check made to ensure that F < L

capability.length = L+ 1;

if(F � L) f

throw capability bounds exception

g

capability.beginning = A� F;

capability.end = A� F+ L+ 1;

desired data = * A;

g

else f

// & is the bitwise AND operator

capability.beginning = (A & (2B � 1))� (F� B)

capability.length = (L+ 17) � 2B

capability.end = capability.beginning + capability.length;

desired data = * A;

g

18

The only valid operations on a capability are addition and subtraction. The new address that results from

an arithmetic operation is simple to calculate:

X = signed integer offset to be added

A2 = new address

A1 = old address

A2 = A1 + X

The method for recalculating the finger field of a capability that has had an arithmetic operation on it is

as follows, written in pseudo-code with verilog bitfield syntax:

F2 = original finger field

F1 = new finger field

X = signed integer offset to be added

B = value of the block length field

F2 = F1 + X[63 : B] + (X[B� 1 : 0] + A1[B� 1 : 0]) � B

The value of the new finger field should be less than the value of the length field but greater than zero;

if not, an error should be flagged. An efficient hardware implementation of the above calculation is given in

[BGKH00]. Note that capabilities cannot be dynamically resized. This implies that the length and block size

fields should never change after an arithmetic operation. In order to grow a capability, a new one must be

created and the contents of the old one copied into the new one.

The ADAM capability format contains an explicit processor node ID embedded within the address field of

the capability. The size of the node ID field allows for up to one million processors to be present in the system,

but the actual allocation of capabilities on these nodes is left up to the operating system. Because capabilities

are opaque to the programmer and the allocation process is implementation-specific, all ADAM applications

can run on implementations with anywhere between one and one million nodes, with no requirement on the

distribution of node IDs. Valid node IDs can even change dynamically, so long as the OS is careful to ensure

that a node is empty before deactivating its ID. This can be useful in situations where environmental monitors

detect an impending failure, or where users wish to hot-swap nodes to perform upgrades or service. Note that

the amount of available memory for applications to run does vary with the number of nodes in the system,

but the address space is fairly large so users should rarely encounter this situation.

The capability format also includes a number of bits for memory management and security purposes.

These bits are:

� environment/data: indicates if the capability is for environment space or for data space. Normally this bit

should not be modified after capability creation.

� increment-only: indicates that only arithmetic operations that result in offsets that result in an address

greater than the current address are valid

� valid: indicates if a capability is valid. An attempt to dereference an invalid capability results in a protec-

tion fault.

19

� marked: used for garbage collection

� read: indicates that data can be read from the capability.

� write: indicates that data can be written to the capability.

� uncopyable: indicates that only dequeue operations are allowed on the capability; an attempt to copy the

capability will result in an exception being raised.

� owner: when the owner bit is set, the read, write, and uncopyable bits can be overridden.

� primary: indicates that this capability is the primary working copy. For capabilities in data space, it marks

the endpoint of a migration list. For capabilities in environment space, it also marks a thread with this bit

set as the only runnable copy.

� SQUID:ShortQuasi-UniqueID . A short tag field that contains a randomly generated ID number assigned

at the time of capability allocation; when a capability is migrated, this field is directly copied. Use of this

field reduces the cost of capability inequality comparisons.

There are no load or store instructions in the ADAM specification. The memory is an opaque object

accessed only through queue mappings. TheMMLandMMSopcodes are used to initiate load and store queue

pairs, respectively.MMLtakes an outgoing address queue and a return data queue as arguments;MMStakes an

outgoing address queue and an outgoing data queue as arguments. The ordering of data in any single given

load or store queue mapping is guaranteed to be preserved; address and data occur in lock-step. However,

the ordering between mappings is not guaranteed; hence, sharing a single queue for multiple memory queue

maps is not recommended as it results in nondeterministic behavior.

Locks and semaphores can be implemented using a combination of theMMS, MML, andEXCHopcodes.

The EXCHopcode declares a previously estabished store and load mapping as anexchange pair. This ex-

change pair declaration causes any store issued into the store queue to automatically return the displaced

value in the load queue. This exchange is guaranteed by hardware in the memory subsystem to be atomic.

The timing of the exchange is not deterministic; the actual exchange on the memory location happens when-

ever the store request arrives at the destination memory location.

When initializing a memory queue, the first piece of data written into an address queue must be a capa-

bility or a memory access exception is raised. Subsequent accesses may pass more capabilities or any integer

data type. When an integer data type is put into a memory queue, it is assumed to be an offset off of the most

recent capability passed into the address queue. Putting a packed integer into an address queue causes data

to be returned for each of the packed sub-values, starting with the least significant value end ending with the

most significant value.

One feature that the memory queue access form enables is the user can extend the ADAM specification

by add intelligence to the memory system. Capabilities and offsets are thrown into a memory queue, and

the memory system is free to do what it likes before returning some data. Thus, the memory system can be

augmented to be more than just a table of stored values.

As a note on implementation, the actual amount of fast memory available to each node is fairly small.

20

The presumption is that the fast memory is managed like a cache with very large lines, and that the working

set of any processor is kept small by migrating excess data to neighboring nodes. It is also presumed that

hitting off-chip memory and ultimately the hard drive provides some kind of performance rolloff. While the

processor is waiting for data to be swapped or moved around, the garbage collector and migration manager

are run more frequently in an attempt to reduce the size of the working set and balance the load among

neighboring nodes.

1.2.5 Über-Capability

ADAM provides no supervisor mode or explicit kernel permissions in the style of Java. Initialization of

ADAM is performed by a third-party operating system or boot monitor; the initialization process creates an

über-capability that is the size of accessible memory and gives it to an initial thread. This initial thread is

effectively the kernel thread, as it is responsible for managing memory and starting all child processes. Since

ADAM is a virtual machine, multitasking on a single large machine is accomplished by dividing the machine

into smaller groups of physical nodes and starting an ADAM per task, and each ADAM runs only one task.

The equivalent of “nicing” a process on a machine running multiple ADAMs is dynamically varying the

number of nodes allocated to an ADAM.

On power-up, each physical node starts code execution at location 0 in code space, and an ¨uber-capability

is initially placed in q0. The ¨uber-capability is set to be the size of the entire virtual memory available for

that node, and the owner bit is set. The ¨uber-capability effectively is the process ID for the node’s OS,

as it is responsible for allocating portions of the ¨uber-capability to user level tasks and devices, hence the

ALLOCATE family of instructions interact with special code in the ¨uber-process. User threads cannot stomp

on other threads because capabilities cannot be grown and base and bounds behavior is always enforced on

dereferences.

1.2.6 Exception Handling

Exceptions on ADAM are inherently imprecise. ADAM is a distributed machine that runs many parallel

threads. Hence, just as in the principle of relativity, the definition of simultaneity is blurred. ADAM’s take

on exceptions is two-pronged: first, the result of every exception-causing event is tagged; second, as much

local state relevant to the exception is preserved at the instant an exception is detected.

When a thread is swapped in, an exception capability is included as part of its state. This exception

capability is initialized on thread creation to point to a default exception handling object (usually an OS-

defined object), and can be over-ridden by the user at any time. In the case that the user pointer is invalid, the

processor falls back to the default handler. The first word of any exception handler object must be a value for

thePCthat corresponds to the object’s server code.

An exception handler is expected to first inspect the processor status register to determine the source of

21

the exception. The exception handler can determine which context caused the exception by examining the

Exceptioned Context ID register, which contains a capability to the thread that caused the exception. A set

of status bits within the status register are reserved for hardware exceptions. Having no hardware exception

bits set indicates that a software exception was thrown, in which case a user-defined protocol is typically

employed for communicating the exception type. A properly written OS handler should handle all exception

cases, with the ultimate exception being one that halts the program and makes debug information available.

An improperly written OS handler can lead to unpredictable machine operation.

some object

exception ptr

hardware default
exception ptr.

OS exception
handler

if no overriding
exception

pointer defined superclasses'
exception object +
durasive methods

exception ptr

local exception object +
durasive methods

super

etc...

may be initialized
to user-space handler

as well

Figure 1-8: Exception handling overview

Exception handler objects are intended to be instantiated only once within a machine, and thus throwing

an exception could be relatively slow because the handler is typically a remote object. Thus, exceptions are

intended to be rare events, and users should avoid using the exception mechanism for anything other than

exception handling. It is possible, however, that very popular run-time exception handlers could be migrated

like any other object, since handlers are first-class objects.

Illegal opcode exceptions are handled in a different manner, similar to the Alpha architecture’s PALcode.

An illegal opcode dispatches into a look-up table in memory that has a hard-wired address, and control flow

is transferred to an implementation-specific microcode processor that has access to all local state. The mi-

crocode processor could be as simple as a dedicated context ID on the ADAM plus instruction set extensions.

The code that the microcode processor executes is stored in a reserved location in kernel memory. This allows

for instructions implemented in future versions of the architecture to be emulated via software patches set up

by the OS. During emulation mode, the processor behaves as if it had stalled, and errors during emulation

mode lead to undefined behavior. It is recommended that the default behavior for an illegal opcode be an

22

emulatedTHROWinstruction.

1.2.7 Status and Mode Register

Things in the status and mode register include:

� exception masks (copy/clobber, overflow, div by 0, NaN, invalid type, capability access violation, im-

mutable violation)

� exception status bits – has any of the above masking conditions occured?

� other mode bits (rounding modes, etc) ... will be defined later

� net traffic on thread-mapped queues since last checkpoint

Exceptions can either be trapping or non-trapping. Users can handle errors by just checking the tag bits

on return data types and turn off all exception trapping if desired.

Things in the implementation register include (perhaps these are just directly controlled by the manage-

ment processor):

� configuration (cache on/off)

� version

� temperature

� current consumption

1.2.8 Thread and Class File Format

Need to address stuff like:

� how to grow the heap and still keep the thread mobile (mini-page table in every capability!) – only use

on threads that callALLOCATE(notALLOCATEC)

� status word at top of every thread to determine what type of thread it is

� storage of queue mappings

� storage of constants and text

1.3 Issues

also need to write up some ideas about transactional behavior and ways to implement them using the ADAM

architecture (persistant FIFO’s and pointer state).

memory subsystem and capabilities. two axes of decisions to make:

* move versus copy policy for capabilities - good for GC and management of data in machine - bad be-

cause every data access becomes a synchronize in a capability with embedded offset scenario, works okay

with separate capability and offset streams * capability + offset or capability with embedded offset - embed-

ded offset allows for easier pass-by-reference of data within a capability - capability + offset allows you to

23

have a move policy for capabilities, and it allows you to do more with your capabilities (moves tags out of

band)

what to do in the case of a dead child thread in the case of a suicide. usually parent kills child thread

and child is GC’d; if child commits suicide and parent does not know this, does an access to the child

mean the parent dies? or does it just throw an exception? perhaps it should throw an exception that can

programmatically lead to parent death.

24

Appendix A

Opcodes

Implementing someone else’s specification is the moral equivalent of trans-
lating fifty VCR user’s manuals from English to Japanese.

—bunnie on implementing IEEE standards

A.1 General Notes

RTL descriptions of opcode operations are given in blocking form; i.e., the following lines of code

PC PC + 1
qc PC
PC PC + offset

stores the value of the initialPC + 1 into qc , and the value of the initialPC + 1 + offset into PC.

Also, note that if noPCoperation is specified, a default operation ofPC PC + 1 is implied, and

that an exception can be thrown as a result of thePC increment if thePCenters into a protected or invalid

code region.

A.2 Lazy Instructions

The following instructions may require multiple cycles to complete executionanddo not stall the program

counter (some instructions will require multiple cycles, but stall the PC until they are complete). The most

important thing to note is that these instructions in fact do not guarantee how long it will take to complete.

Two instructions started in an overlapping manner may complete out of order. For example, the code

SPAWNC qn, label1, q0

25

SPAWNC qn, label2, q0

May result with the capability for thelabel1 thread returned after the capability for thelabel2 thread. If

the order of the return values matters, it is recommended that a blocking intermediate queue move operation

be employed:

SPAWNC qn, label1, q0
MOVE q0, q1
SPAWNC qn, label2, q0
MOVE q0, q1

Execution will block each time on theMOVE q0, q1 instruction untilq0 has a value.

This behavior of a multicylce instruction is referred to as “lazy”. The following instructions are lazy:

SPAWN
SPAWNC
ALLOCATE
ALLOCATEC

A.3 Instruction Summary

Integer Arithmetic Instructions:
ADD qa, qb, qc
SUB qa, qb, qc
MUL qa, qb, qc
DIV qa, qb, qc
ADDC qa, n, qc
SUBC qa, n, qc
MULC qa, n, qc
DIVC qa, n, qc

Logical Operator Instructions:
AND qa, qb, qc
OR qa, qb, qc
XOR qa, qb, qc
NOT qa, qc
ANDC qa, n, qc
ORC qa, n, qc
XORC qa, n, qc
SHL qa, qb, qc
SHR qa, qb, qc
SRA qa, qb, qc
SHLC qa, n, qc
SHRC qa, n, qc
SRAC qa, n, qc

Integer Comparison Instructions:
SEQ qa, qb, qc
SNE qa, qb, qc
SLT qa, qb, qc
SGT qa, qb, qc
SLE qa, qb, qc
SGE qa, qb, qc
SIC qa, qc

26

SEQC qa, n, qc
SNEC qa, n, qc
SLTC qa, n, qc
SGTC qa, n, qc
SLEC qa, n, qc
SGEC qa, n, qc

Floating point to Integer Conversions:
TOINT qa, qc
TOREAL qa, qc

Floating Point Arithmetic Instructions:
FADD qa, qb, qc
FSUB qa, qb, qc
FMUL qa, qb, qc
FDIV qa, qb, qc
FADDC qa, n, qc
FSUBC qa, n, qc
FMULC qa, n, qc
FDIVC qa, n, qc

Floating Point Comparison Instructions:
FSEQ qa, qb, qc
FSNE qa, qb, qc
FSLT qa, qb, qc
FSGT qa, qb, qc
FSLE qa, qb, qc
FSGE qa, qb, qc
FSEQC qa, n, qc
FSNEC qa, n, qc
FSLTC qa, n, qc
FSGTC qa, n, qc
FSLEC qa, n, qc
FSGEC qa, n, qc

Branch and Jump Instructions:
BR label
BRL label, qc
BRZ qa, label
BRNZ qa, label
BRNE qa, label
BREL qa
JMP qa

Internal Data Manipulation Instructions:
MOVE qa, qc
MOVECF n, qc
MOVECL n, qc
MOVECI n, qc
MOVECS n, qc
MOVECC n, qc
PACKN qa, qb, qc, n
PACKH qa, qb, qc
PACKL qa, qb, qc
PACKI qa, qb, qc
UNPACK qa, qb, qc
UNPACKC qa, n, qc
EXTAG qa, qc
SETTAG qa, qb, qc

27

Queue Management Instructions:
FLUSHQ qc
SPAWN qa, qb, qc
SPAWNC qa, label, qc
SPAWNL qa, qb, qc
MAPQ qa, qb, qc
MAPQC qa, qb, qc
MAPSQ qa, qb
MAPDROP n
UNMAPQ n
CONSUME qa
SEMPTY qa, qc
EEQ qc

Thread and Context Management Instructions:
PROCID qc
LDCODE qa, qc
OSIZE n

Memory Instructions:
PTRSIZE qa, qc
ALLOCATE qa, qb, qc
ALLOCATEC qa, n, qc
MML qa, qb
MMS qa, qb
EXCH qa, qb, qc
PARCEL qa, qb, qc

Mode and Exception Handling Instructions:
GETSTAT qc
SETSTAT qa GETEX qc
SETEX qa
THROW

Transaction Support:
INITCHK qa, qc (allocate checkpoint image -> qc)
CHKBAR (flush memory queues for impending checkpoint)
CHKPNT qa (copy machine state to memory, then copy primary
image to checkpoint image in qa)
ROLLBCK qa (reset machine state to checkpoint image in qa)

Miscellaneous Instructions:
RANDOM qc
HINT t,hint

Machine Specific Instructionsused by OS trap handlers:
MOVEMI msr, qc
MOVEMO qa, msr
SCHEDULE qa, qb
SYNC qa, qc

A.4 To do:

Exceptions that can be triggered: access violation Need to define a method for handling exceptions; current

proposal is to do arithmetic exceptions “exactly” by setting an exception bit in the resulting tag. Access

violations could be handled similarly, where a piece of data tagged invalid or violation can be returned on

28

a read queue. It may be helpful to return the violating capability as well, since many operations deep could

have occurred.

29

ADD

ADD qa, qb, qc

Description:
ADD(addition) takes the sum ofqa andqb and returns the result inqc . qa andqb must be of the same

integer type (word, packed int, packed short, or packed char), in which case the result inqc will have the

same type as its predecessors. Also,qa may be a capability andqb may be a word, in which case the result

will be a capability. Ifqa or qb have incompatible types,qc will be tagged as invalid and a type exception

raised. Ifqa is a capability and the add operation with word inqb is not permitted or results in an invalid

capability, an operation exception is raised and the result inqc is an invalid capability.

If qa is non-copyable capability, then a successfulADDoperation dequeuesqa even if the copy/clobber

modifier forqa is set to copy and an exception is thrown.

TheADDoperation is only executed if bothqa andqb operands are available and there is no backpressure

onqc . Otherwise, the instruction stalls.

Operation:
if(type(qa,qb) == word)

qc qa + qb
elif(type(qa,qb) == packed int)

qc.a qa.a + qb.a
qc.b qa.b + qb.b

elif(type(qa,qb) == (packed char or packed short))
qc.a qa.a + qb.a
qc.b qa.b + qb.b
qc.c qa.c + qb.c
qc.d qa.d + qb.d

elif((type(qa) == capability) && (type(qb) == word))
temp qa + SEXT(qb & ADDRMASK)

if(temp is valid)
qc temp
if(qa == non-copyable)

forceDequeue(qa) // flag error if copy bit is set on qa
else

throw operation exception
qc invalid

else
throw type exception

Exceptions:

Type exception, operation exception, and overflow exception.

Qualifiers:
None.

Notes:
Overflowed results also set the respective overflow bit inqc ’s type field.

30

ADDC

ADDC qa, n, qc

Description:

ADDC(addition with constant) takes the sum ofqa andn and returns the result inqc . qa can be of an integer

type (word, packed int, packed short, or packed char), in which case the result inqc will have the same type

as its predecessors. In the case of packed types, the same constant is added to each sub-integer. Also,qa may

be a capability, in which case the result will be a capability. Ifqa is a capability and the add operation with

word in qb is not permitted or results in an invalid capability, an operation exception is raised and the result

in qc is an invalid capability.

If qa is non-copyable capability, then a successfulADDCoperation dequeuesqa even if the copy/clobber

modifier forqa is set to copy and an exception is thrown.

TheADDCoperation is only executed ifqa is available and there is no backpressure onqc . Otherwise, the

instruction stalls.

Operation:
if(type(qa) == word)

qc qa + SEXT(n)

elif(type(qa) == packed int)
qc.a qa.a + n
qc.b qa.b + n

elif(type(qa) == (packed char or packed short))
qc.a qa.a + n
qc.b qa.b + n
qc.c qa.c + n
qc.d qa.d + n

elif(type(qa) == capability)
temp qa + SEXT(n & ADDRMASK)

if(temp is valid)
qc temp
if(qa == non-copyable)

forceDequeue(qa) // flag error if copy bit is set on qa
else

throw operation exception

qc invalid
else

throw type exception

Exceptions:

Type exception, operation exception, and overflow exception.

Qualifiers:
None.

Notes:
Overflowed results also set the respective overflow bit inqc ’s type field.

31

SUB

SUB qa, qb, qc

Description:

SUB(subtraction) takes the difference ofqa andqb and returns the result inqc . qa andqb must be of

the same integer type (word, packed int, packed short, or packed char), in which case the result inqc will

have the same type as its predecessors. Also,qa may be a capability andqb may be a word, in which case

the result will be a capability. Ifqa or qb have incompatible types,qc will be tagged as invalid and a type

exception raised. Ifqa is a capability and the add operation with word inqb is not permitted or results in an

invalid capability, an operation exception is raised and the result inqc is an invalid capability.

If qa is non-copyable capability, then a successfulSUBoperation dequeuesqa even if the copy/clobber

modifier forqa is set to copy, and an exception is thrown.

TheSUBoperation is only executed if bothqa andqb operands are available and there is no backpressure

onqc . Otherwise, the instruction stalls.

Operation:

if(type(qa,qb) == word)
qc qa - qb

elif(type(qa,qb) == packed int)
qc.a qa.a - qb.a
qc.b qa.b - qb.b

elif(type(qa,qb) == (packed char or packed short))
qc.a qa.a - qb.a
qc.b qa.b - qb.b
qc.c qa.c - qb.c
qc.d qa.d - qb.d

elif((type(qa) == capability) && (type(qb) == word))
temp qa - SEXT(qb & ADDRMASK)
if(temp is valid)

qc temp
if(qa == non-copyable)

forceDequeue(qa)
else

throw operation exception
qc invalid

else
throw type exception

Exceptions:

Type exception, operation exception, and overflow exception.

Qualifiers:

None.

Notes:
Overflowed results also set the respective overflow bit inqc ’s type field.

32

SUBC

SUBC qa, n, qc

Description:

SUBC(subtraction with constant) takes the difference ofqa andn and returns the result inqc . qa can be

of an integer type (word, packed int, packed short, or packed char), in which case the result inqc will have

the same type as its predecessors. In the case of packed types, the same constant is subtracted from each sub-

integer. Also,qa may be a capability, in which case the result will be a capability. Ifqa is a capability and

the add operation with word inqb is not permitted or results in an invalid capability, an operation exception

is raised and the result inqc is an invalid capability.

If qa is non-copyable capability, then a successfulSUBCoperation dequeuesqa even if the copy/clobber

modifier forqa is set to copy and an exception is thrown.

TheSUBCoperation is only executed ifqa is available and there is no backpressure onqc . Otherwise, the

instruction stalls.

Operation:
if(type(qa) == word)

qc qa - SEXT(n)

elif(type(qa) == packed int)
qc.a qa.a - n
qc.b qa.b - n

elif(type(qa) == (packed char or packed short))
qc.a qa.a - n
qc.b qa.b - n
qc.c qa.c - n
qc.d qa.d - n

elif(type(qa) == capability)
temp qa - SEXT(n & ADDRMASK)

if(temp is valid)
qc temp
if(qa == non-copyable)

forceDequeue(qa) // flag error if copy bit is set on qa
else

throw operation exception
qc invalid

else
throw type exception

Exceptions:

Type exception, operation exception, and overflow exception.

Qualifiers:
None.

Notes:
Overflowed results also set the respective overflow bit inqc ’s type field.

33

MUL

MUL qa, qb, qc

Description:
MUL(multiplication) takes the product ofqa andqb and returns the lowest bits of the result inqc . qa and

qb must be of the same integer type (word, packed int, packed short, or packed char), in which case the result

in qc will have the same type as its predecessors. Ifqa or qb have incompatible types,qc will be tagged as

invalid and a type exception raised.

TheMULoperation is only executed if bothqa andqb operands are available and there is no backpressure

onqc . Otherwise, the instruction stalls.

Operation:
if(type(qa,qb) == word)

qc (qa * qb) & 0xFFFFFFFFFFFFFFFF
elif(type(qa,qb) == packed int)

qc.a (qa.a * qb.a) & 0xFFFFFFFF
qc.b (qa.b * qb.b) & 0xFFFFFFFF

elif(type(qa,qb) == (packed char or packed short))
qc.a (qa.a * qb.a) & 0xFFFF
qc.b (qa.b * qb.b) & 0xFFFF
qc.c (qa.c * qb.c) & 0xFFFF
qc.d (qa.d * qb.d) & 0xFFFF

else
throw type exception

Exceptions:
Type exception and overflow exception.

Qualifiers:

None.

Notes:

Overflowed results also set the respective overflow bit inqc ’s type field.

34

MULC

MULC qa, n, qc

Description:

MULC(multiplication with constant) takes the product ofqa andn and returns the lowest bits of the result in

qc . qa can be of an integer type (word, packed int, packed short, or packed char), in which case the result in

qc will have the same type as its predecessors. In the case of packed types, the same constant is multiplied

to each sub-integer.

TheMULCoperation is only executed ifqa is available and there is no backpressure onqc . Otherwise, the

instruction stalls.

Operation:

if(type(qa) == word)
qc (qa * n) & 0xFFFFFFFFFFFFFFFF

elif(type(qa) == packed int)
qc.a (qa.a * n) & 0xFFFFFFFF
qc.b (qa.b * n) & 0xFFFFFFFF

elif(type(qa) == (packed char or packed short))
qc.a (qa.a * n) & 0xFFFF
qc.b (qa.b * n) & 0xFFFF
qc.c (qa.c * n) & 0xFFFF
qc.d (qa.d * n) & 0xFFFF

else
throw type exception

Exceptions:
Type exception and overflow exception.

Qualifiers:

None.

Notes:

Overflowed results also set the respective overflow bit inqc ’s type field.

35

DIV

DIV qa, qb, qc

Description:
DIV (integer divide) takes the division ofqa andqb and returns the result inqc . Non-integer results are

truncated.qa andqb must be of the same integer type (word, packed int, packed short, or packed char), in

which case the result inqc will have the same type as its predecessors. Ifqa or qb have incompatible types,

qc will be tagged as invalid and a type exception raised. If the divisorqb is zero, a divide by zero exception

is thrown andqc is marked as invalid, with the specific packed component ofqc that is erroneous marked as

overflowed.

TheDIV operation is only executed if bothqa andqb operands are available and there is no backpressure

onqc . Otherwise, the instruction stalls.

Operation:
if(type(qa,qb) == word)

if(qb == 0)
throw divide-by-zero exception
type(qc) invalid, overflow.a

else
qc qa / qb

elif(type(qa,qb) == packed int)
if(qb.a == 0)

throw divide-by-zero exception
type(qc.a) invalid, overflow.a

else
qc.a qa.a / qb.a

if(qb.b == 0)
throw divide-by-zero exception
type(qc.b) invalid, overflow.b

else
qc.b qa.b / qb.b

elif(type(qa,qb) == (packed char or packed short))
if(qb.a == 0)

throw divide-by-zero exception
type(qc.a) invalid, overflow.a

else
qc.a qa.a / qb.a

if(qb.b == 0)
throw divide-by-zero exception
type(qc.b) invalid, overflow.b

else
qc.b qa.b / qb.b

if(qb.c == 0)
throw divide-by-zero exception
type(qc.c) invalid, overflow.c

else
qc.c qa.c / qb.c

if(qb.d == 0)

36

throw divide-by-zero exception
type(qc.d) invalid, overflow.d

else
qc.d qa.d / qb.d

else
throw type exception

Exceptions:

Type exception, and divide-by-zero exception.

Qualifiers:

None.

Notes:
None.

37

DIVC

DIVC qa, n, qc

Description:

DIVC (division with constant) takes the division ofqa andn and returns the result inqc . qa can be of an

integer type (word, packed int, packed short, or packed char), in which case the result inqc will have the

same type as its predecessors. In the case of packed types, the same constant is multiplied to each sub-integer.

If the divisorn is zero, a divide by zero exception is thrown andqc is marked as invalid, with the specific

packed component ofqc that is erroneous marked as overflowed.

TheDIVC operation is only executed ifqa is available and there is no backpressure onqc . Otherwise, the

instruction stalls.

Operation:

if(type(qa) == word)
if(n == 0)

throw divide-by-zero exception
type(qc) invalid, overflow.a

else
qc qa / SEXT(n)

elif(type(qa) == packed int)
if(n == 0)

throw divide-by-zero exception
type(qc.a) invalid, overflow.a
type(qc.b) invalid, overflow.b

else
qc.a qa.a / n
qc.b qa.b / n

elif(type(qa) == (packed char or packed short))
if(n == 0)

throw divide-by-zero exception
type(qc.a) invalid, overflow.a
type(qc.b) invalid, overflow.b
type(qc.c) invalid, overflow.c
type(qc.d) invalid, overflow.d

else
qc.a qa.a / n
qc.b qa.b / n
qc.c qa.c / n
qc.d qa.d / n

else
throw type exception

Exceptions:

Type exception, divide-by-zero exception and overflow exception.

Qualifiers:

None.

Notes:

Overflowed results also set the respective overflow bit inqc ’s type field.

38

AND,OR,XOR

AND,OR,XOR qa, qb, qc

Description:
AND, OR, andXORperform bitwise operations onqa andqb and returns the result inqc . qa andqb must be

of the same integer type (word, packed int, packed short, or packed char), in which case the result inqc will

have the same type as its predecessors. Ifqa or qb have incompatible types,qc will be tagged as invalid and

a type exception raised.

The AND,OR,XORoperation is only executed if bothqa and qb operands are available and there is no

backpressure onqc . Otherwise, the instruction stalls.

Operation:
OP is one of bitwise AND, OR, XOR
if(type(qa,qb) == word)

qc qa OP qb
elif(type(qa,qb) == packed int)

qc.a qa.a OP qb.a
qc.b qa.b OP qb.b

elif(type(qa,qb) == (packed char or packed short))
qc.a qa.a OP qb.a
qc.b qa.b OP qb.b
qc.c qa.c OP qb.c
qc.d qa.d OP qb.d

else
throw type exception

Exceptions:
Type exception.

Qualifiers:
None.

Notes:

None.

39

NOT

NOT qa, qc

Description:

NOTperforms a bitwise inversion onqa and returns the result inqc . qa must be of an integer type (word,

packed int, packed short, or packed char), in which case the result inqc will have the same type as its

predecessors. Ifqa has an incompatible type,qc will be tagged as invalid and a type exception raised.

TheNOToperation is only executed ifqa is available and there is no backpressure onqc . Otherwise, the

instruction stalls.

Operation:

if(type(qa) == word)
qc �qa

elif(type(qa) == packed int)
qc.a �qa.a
qc.b �qa.b

elif(type(qa,qb) == (packed char or packed short))
qc.a �a.a
qc.b �qa.b
qc.c �qa.c
qc.d �qa.d

else
throw type exception

Exceptions:
Type exception.

Qualifiers:

None.

Notes:

None.

40

ANDC,ORC,XORC

ANDC,ORC,XORC qa, n, qc

Description:
ANDC, ORC, andXORCperform a bitwise operation onqa and a sign-extendedn and returns the result in

qc . qa can be of an integer type (word, packed int, packed short, or packed char), in which case the result in

qc will have the same type as its predecessors. In the case of packed types, the same constant is operated on

each sub-integer.

The ANDC,ORC,XORCoperation is only executed ifqa is available and there is no backpressure onqc .

Otherwise, the instruction stalls.

Operation:

OP is one of bitwise AND, OR, XOR
if(type(qa) == word)

qc qa OP SEXT(n)
elif(type(qa) == packed int)

qc.a qa.a OP n
qc.b qa.b OP n

elif(type(qa) == (packed char or packed short))
qc.a qa.a OP n
qc.b qa.b OP n
qc.c qa.c OP n
qc.d qa.d OP n

else
throw type exception

Exceptions:
Type exception.

Qualifiers:

None.

Notes:

None.

41

SHL

SHL qa, qb, qc

Description:
SHL (shift-left) performs a logical left-shift on the contents ofqa by the number of digits specified inqb ,

and returns the result inqc . Bits shifted off the left are thrown away, and zeroes are shifted in from the right.

qa andqb must be of the same integer type (word, packed int, packed short, or packed char), in which case

the result inqc will have the same type as its predecessor. Ifqa or qb have incompatible types,qc will be

tagged as invalid and a type exception raised.

TheSHLoperation is only executed if bothqa andqb operands are available and there is no backpressure

onqc . Otherwise, the instruction stalls.

Operation:

if(type(qa,qb) == word)
qc qa � (qb & 0x3F)

elif(type(qa,qb) == packed int)
qc.a qa.a � (qb.a & 0x1F)
qc.b qa.b � (qb.b & 0x1F)

elif(type(qa,qb) == (packed char or packed short))
qc.a qa.a � (qb.a & 0xF)
qc.b qa.b � (qb.b & 0xF)
qc.c qa.c � (qb.c & 0xF)
qc.d qa.d � (qb.d & 0xF)

else
throw type exception

Exceptions:

Type exception.

Qualifiers:
None.

Notes:
None.

42

SHLC

SHLC qa, n, qc

Description:

SHLC(shift left by constant) performs a logical left-shift on the contents ofqa by the number of digits

specified inn, and returns the result inqc . Bits shifted off the left are thrown away, and zeroes are shifted in

from the right.qa must be of an integer type (word, packed int, packed short, or packed char), in which case

the result inqc will have the same type as its predecessor. In the case thatqa is a packed type, each subword

will be shifted left by the same amount. Ifqa has an incompatible type,qc will be tagged as invalid and a

type exception raised.

TheSHLCoperation is only executed ifqa is available and there is no backpressure onqc . Otherwise, the

instruction stalls.

Operation:
if(type(qa) == word)

qc qa � (n & 0x3F)

elif(type(qa) == packed int)
qc.a qa.a � (n & 0x1F)
qc.b qa.b � (n & 0x1F)

elif(type(qa) == (packed char or packed short))
qc.a qa.a � (n & 0xF)
qc.b qa.b � (n & 0xF)
qc.c qa.c � (n & 0xF)
qc.d qa.d � (n & 0xF)

else
throw type exception

Exceptions:

Type exception.

Qualifiers:
None.

Notes:
None.

43

SHR

SHR qa, qb, qc

Description:
SHR(logical shift right)performs a logical right-shift on the contents ofqa by the number of digits specified

in qb , and returns the result inqc . Bits shifted off the right are thrown away, and zeroes are shifted in from

the left. qa andqb must be of the same integer type (word, packed int, packed short, or packed char), in

which case the result inqc will have the same type as its predecessor. Ifqa or qb have incompatible types,

qc will be tagged as invalid and a type exception raised.

TheSHRoperation is only executed if bothqa andqb operands are available and there is no backpressure

onqc . Otherwise, the instruction stalls.

Operation:

if(type(qa,qb) == word)
qc qa � (qb & 0x3F)

elif(type(qa,qb) == packed int)
qc.a qa.a � (qb.a & 0x1F)
qc.b qa.b � (qb.b & 0x1F)

elif(type(qa,qb) == (packed char or packed short))
qc.a qa.a � (qb.a & 0xF)
qc.b qa.b � (qb.b & 0xF)
qc.c qa.c � (qb.c & 0xF)
qc.d qa.d � (qb.d & 0xF)

else
throw type exception

Exceptions:

Type exception.

Qualifiers:
None.

Notes:
None.

44

SHRC

SHRC qa, n, qc

Description:

SHRC(logical shift right by constant) performs a logical right-shift on the contents ofqa by the number of

digits specified inn, and returns the result inqc . Bits shifted off the right are thrown away, and zeroes are

shifted in from the left.qa must be of an integer type (word, packed int, packed short, or packed char), in

which case the result inqc will have the same type as its predecessor. In the case thatqa is a packed type,

each subword will be shifted left by the same amount. Ifqa has an incompatible type,qc will be tagged as

invalid and a type exception raised.

TheSHRCoperation is only executed ifqa is available and there is no backpressure onqc . Otherwise, the

instruction stalls.

Operation:
if(type(qa) == word)

qc qa � (n & 0x3F)

elif(type(qa) == packed int)
qc.a qa.a � (n & 0x1F)
qc.b qa.b � (n & 0x1F)

elif(type(qa) == (packed char or packed short))
qc.a qa.a � (n & 0xF)
qc.b qa.b � (n & 0xF)
qc.c qa.c � (n & 0xF)
qc.d qa.d � (n & 0xF)

else
throw type exception

Exceptions:

Type exception.

Qualifiers:
None.

Notes:
None.

45

SRA

SRA qa, qb, qc

Description:
SRA(arithmetic shift right) performs an arithmetic (sign-preserving) right-shift on the contents ofqa by the

number of digits specified inqb , and returns the result inqc . Bits shifted off the right are thrown away, and

the value of the sign bit is shifted in from the left (zero if the number being shifted is positive, one if the

number being shifted is negative).qa andqb must be of the same integer type (word, packed int, packed

short, or packed char), in which case the result inqc will have the same type as its predecessor. Ifqa or qb

have incompatible types,qc will be tagged as invalid and a type exception raised.

TheSRAoperation is only executed if bothqa andqb operands are available and there is no backpressure

onqc . Otherwise, the instruction stalls.

Operation:
if(type(qa,qb) == word)

qc qa SRA (qb & 0x3F)

elif(type(qa,qb) == packed int)
qc.a qa.a SRA (qb.a & 0x1F)
qc.b qa.b SRA (qb.b & 0x1F)

elif(type(qa,qb) == (packed char or packed short))
qc.a qa.a SRA (qb.a & 0xF)
qc.b qa.b SRA (qb.b & 0xF)
qc.c qa.c SRA (qb.c & 0xF)
qc.d qa.d SRA (qb.d & 0xF)

else
throw type exception

Exceptions:
Type exception.

Qualifiers:

None.

Notes:

None.

46

SRAC

SRAC qa, n, qc

Description:

SRAC(arithmetic shift right by constant) performs an arithmetic right-shift on the contents ofqa by the

number of digits specified inn, and returns the result inqc . Bits shifted off the right are thrown away, and

the value of the sign bit is shifted in from the left (zero if the number being shifted is positive, one if the

number being shifted is negative).qa must be of an integer type (word, packed int, packed short, or packed

char), in which case the result inqc will have the same type as its predecessor. In the case thatqa is a packed

type, each subword will be shifted left by the same amount. Ifqa has an incompatible type,qc will be tagged

as invalid and a type exception raised.

TheSRACoperation is only executed ifqa is available and there is no backpressure onqc . Otherwise, the

instruction stalls.

Operation:

if(type(qa) == word)
qc qa SRA (n & 0x3F)

elif(type(qa) == packed int)
qc.a qa.a SRA (n & 0x1F)
qc.b qa.b SRA (n & 0x1F)

elif(type(qa) == (packed char or packed short))
qc.a qa.a SRA (n & 0xF)
qc.b qa.b SRA (n & 0xF)
qc.c qa.c SRA (n & 0xF)
qc.d qa.d SRA (n & 0xF)

else
throw type exception

Exceptions:
Type exception.

Qualifiers:

None.

Notes:

None.

47

SEQ,SLT,SLE

SEQ,SLT,SLE qa, qb, qc

Description:
SEQ, SLT, andSLE perform magnitude comparisons on its arguments and produce a binary result.SEQtest

if qa andqb are equal;SLT tests ifqa is less thanqb ; andSLE tests ifqa is less than or equal toqb˙qa and

qb must be of the same integer type (word, packed int, packed short, or packed char), in which case the result

in qc will have the same type as its predecessor. Ifqa or qb have incompatible types,qc will be tagged as

invalid and a type exception raised.

TheSxx operation is only executed if bothqa andqb operands are available and there is no backpressure

onqc . Otherwise, the instruction stalls.

Operation:

OP is one of arithmetic =, <, �:
if(type(qa,qb) == word)

qc qa OP qb ? 1 : 0
elif(type(qa,qb) == packed int)

qc.a qa.a OP qb.a ? 1 : 0
qc.b qa.b OP qb.b ? 1 : 0

elif(type(qa,qb) == (packed char or packed short))
qc.a qa.a OP qb.a ? 1 : 0
qc.b qa.b OP qb.b ? 1 : 0
qc.c qa.c OP qb.c ? 1 : 0
qc.d qa.d OP qb.d ? 1 : 0

else
throw type exception

Exceptions:

Type exception.

Qualifiers:

None.

Notes:
None.

48

SIC

SIC qa, qc

Description:

SIC tests ifqa is a capability. If it is, a word type 1 is put intoqc . Otherwise, a word type 0 is put intoqc .

TheSIC operation is only executed ifqa is available and there is no backpressure onqc . Otherwise, the

instruction stalls.

Operation:
if(type(qa) == capability)

qc 1
else

qc 0

Exceptions:

None.

Qualifiers:
None.

Notes:

None.

49

SEQC,SLTC,SLEC

SEQC,SLTC,SLEC qa, qb, qc

Description:
SEQC, SLTC, andSLECperform magnitude comparisons on its arguments and produce a binary result.SEQC

test ifqa andn are equal;SLTCtests ifqa is less thann; andSLECtests ifqa is less than or equal ton. qa

must be of an integer type (word, packed int, packed short, or packed char), in which case the result inqc

will have the same type as its predecessor. Ifqa has an incompatible type,qc will be tagged as invalid and a

type exception raised.

TheSxxC operation is only executed ifqa is available and there is no backpressure onqc . Otherwise, the

instruction stalls.

Operation:

OP is one of arithmetic =, <, �:
if(type(qa,qb) == word)

qc qa OP n ? 1 : 0
elif(type(qa,qb) == packed int)

qc.a qa.a OP n ? 1 : 0
qc.b qa.b OP n ? 1 : 0

elif(type(qa,qb) == (packed char or packed short))
qc.a qa.a OP n ? 1 : 0
qc.b qa.b OP n ? 1 : 0
qc.c qa.c OP n ? 1 : 0
qc.d qa.d OP n ? 1 : 0

else
throw type exception

Exceptions:
Type exception.

Qualifiers:

None.

Notes:
None.

50

TOINT

TOINT qa, qc

Description:

TOINT (floating point to integer convert) converts the floating-point value inqa to an integer stored inqc .

Conversion is done using the truncation or “round to zero” method, so that the number 9.6 is converted to 9,

and the number -2.8 is converted to -2. Overflow in either sign extreme results inqc having the maximum

sized integer of the appropriate sign and the overflow bit being set inqc ’s type field. qa must be of the

floating point type, and the result inqc is of type word. Ifqa has an incompatible type,qc will be tagged as

invalid and a type exception raised.

TheTOINT operation is only executed ifqa is available and there is no backpressure onqc . Otherwise, the

instruction stalls.

Operation:
if(type(qa) == floating-point)

qc (word) qa
type(qc) word

else
throw type exception

Exceptions:
Type exception and overflow exception.

Qualifiers:

None.

Notes:

Overflowed results also set the respective overflow bit inqc ’s type field. Attempting to convert +1will result

in the largest positive representable integer inqc and set the overflow bit ofqc . Likewise, converting -1

will result in the most negative representable integer inqc and set the overflow bit ofqc .

Attempting to convert NaN’s will result inqc having an invalid type.

51

TOREAL

TOREAL qa, qc

Description:

TOREAL(integer to floating point convert) converts the integer value inqa to the nearest representable

floating-point value stored inqc . qa must be of the word type, and the result inqc is of the floating point

type. If qa has an incompatible type,qc will be tagged as invalid and a type exception raised.

TheTOREALoperation is only executed ifqa is available and there is no backpressure onqc . Otherwise,

the instruction stalls.

Operation:

if(type(qa) == word)
qc (floating-point) qa
type(qc) floating-point

else
throw type exception

Exceptions:
Type exception.

Qualifiers:

None.

Notes:
None.

52

FADD

FADD qa, qb, qc

Description:
FADD(floating-point addition) takes the sum ofqa andqb and returns the result inqc . qa andqb must be

of the floating-point type, and the resultqc is of the floating point type.

TheFADDoperation is only executed if bothqa andqb operands are available and there is no backpressure

onqc . Otherwise, the instruction stalls.

Operation:
if(type(qa,qb) == floating-point)

qc qa + qb
else

throw type exception

Exceptions:
Type exception and overflow exception.

Qualifiers:

None.

Notes:

Overflowed results also set the respective overflow bit inqc ’s type field.

If any operand is a NaN, the result will be NaN.

53

FADDC

FADDC qa, n, qc

Description:

FADDC(floating-point addition with constant) takes the sum ofqa andn and returns the result inqc . qa

must be of the floating-point type, and the resultqc is of the floating point type.

TheFADDCoperation is only executed ifqa is available and there is no backpressure onqc . Otherwise, the

instruction stalls.

Operation:

if(type(qa) == floating-point)
qc qa + n

else
throw type exception

Exceptions:

Type exception and overflow exception.

Qualifiers:
None.

Notes:
Overflowed results also set the respective overflow bit inqc ’s type field.

If qa is a NaN, the result will be NaN.

54

FSUB

FSUB qa, qb, qc

Description:
FSUB(floating-point subtraction) takes the difference ofqa andqb and returns the result inqc . qa andqb

must be of the floating-point type, and the resultqc is of the floating point type.

TheFSUBoperation is only executed if bothqa andqb operands are available and there is no backpressure

onqc . Otherwise, the instruction stalls.

Operation:
if(type(qa,qb) == floating-point)

qc qa - qb
else

throw type exception

Exceptions:
Type exception and overflow exception.

Qualifiers:

None.

Notes:

Overflowed results also set the respective overflow bit inqc ’s type field.

If any operand is a NaN, the result will be NaN.

55

FSUBC

FSUBC qa, n, qc

Description:

FSUBC(floating-point addition with constant) takes the difference ofqa andn and returns the result inqc .

qa must be of the floating-point type, and the resultqc is of the floating point type.

TheFSUBCoperation is only executed ifqa is available and there is no backpressure onqc . Otherwise, the

instruction stalls.

Operation:

if(type(qa) == floating-point)
qc qa - n

else
throw type exception

Exceptions:
Type exception and overflow exception.

Qualifiers:

None.

Notes:

Overflowed results also set the respective overflow bit inqc ’s type field.

If qa is a NaN, the result will be NaN.

56

FMUL

FMUL qa, qb, qc

Description:
FMUL(floating-point multiply) takes the product ofqa andqb and returns the result inqc . qa andqb must

be of the floating-point type, and the resultqc is of the floating point type.

TheFMULoperation is only executed if bothqa andqb operands are available and there is no backpressure

onqc . Otherwise, the instruction stalls.

Operation:
if(type(qa,qb) == floating-point)

qc qa * qb
else

throw type exception

Exceptions:
Type exception and overflow exception.

Qualifiers:

None.

Notes:

Overflowed results also set the respective overflow bit inqc ’s type field.

If any operand is a NaN, the result will be NaN.

57

FMULC

FMULC qa, n, qc

Description:

FMULC(floating-point multiply with constant) takes the product ofqa andn and returns the result inqc . qa

must be of the floating-point type, and the resultqc is of the floating point type.

TheFMULCoperation is only executed ifqa is available and there is no backpressure onqc . Otherwise, the

instruction stalls.

Operation:

if(type(qa) == floating-point)
qc qa + n

else
throw type exception

Exceptions:

Type exception and overflow exception.

Qualifiers:
None.

Notes:
Overflowed results also set the respective overflow bit inqc ’s type field.

If qa is a NaN, the result will be NaN.

58

FDIV

FDIV qa, qb, qc

Description:
FDIV (floating-point division) dividesqa by qb and returns the quotient inqc . qa andqb must be of the

floating-point type, and the resultqc is of the floating point type. Ifqb is zero, a divide-by-zero exception is

thrown and the resultqc is tagged as invalid.

TheFDIV operation is only executed if bothqa andqb operands are available and there is no backpressure

onqc . Otherwise, the instruction stalls.

Operation:

if(type(qa,qb) == floating-point)
qc qa / qb

else
throw type exception

Exceptions:

Type exception, overflow exception, and divide-by-zero exception.

Qualifiers:
None.

Notes:

Overflowed results also set the respective overflow bit inqc ’s type field.

If any operand is a NaN, the result will be NaN.

59

FDIVC

FDIVC qa, n, qc

Description:

FDIVC (floating-point divide by constant) dividesqa by n and returns the result inqc . qa must be of the

floating-point type, and the resultqc is of the floating point type. Ifn is zero, a divide-by-zero exception is

thrown and the resultqc is tagged as invalid.

TheFDIVC operation is only executed ifqa is available and there is no backpressure onqc . Otherwise, the

instruction stalls.

Operation:

if(type(qa) == floating-point)
qc qa / n

else
throw type exception

Exceptions:

Type exception, overflow exception, and divide-by-zero exception.

Qualifiers:
None.

Notes:
Overflowed results also set the respective overflow bit inqc ’s type field.

If qa is a NaN, the result will be NaN.

60

FSEQ,FSLT,FSLE

FSEQ,FSLT,FSLE qa, qb, qc

Description:
FSEQ, FSLT, andFSLE perform magnitude comparisons on its arguments and produce a binary integer

result.FSEQtest if qa andqb are equal;FSLT tests ifqa is less thanqb ; andFSLE tests ifqa is less than

or equal toqb˙qa andqb must be of the floating-point type. The resultqc is of type word. Ifqa or qb have

incompatible types,qc will be tagged as invalid and a type exception raised.

TheFSxx operation is only executed if bothqa andqb operands are available and there is no backpressure

onqc . Otherwise, the instruction stalls.

Operation:
OP is one of arithmetic =, <, �:
if(type(qa,qb) == floating-point)

qc qa OP qb ? 1 : 0
type(qc) word

else
throw type exception

Exceptions:
Type exception.

Qualifiers:

None.

Notes:

If any of the operands are NaNs, the result is tagged as invalid.

61

FSEQC,FSLTC,FSLEC

FSEQC,FSLTC,FSLEC qa, qb, qc

Description:
FSEQC, FSLTC, andFSLECperform magnitude comparisons on its arguments and produce a binary result.

FSEQCtest ifqa andn are equal;FSLTCtests ifqa is less thann; andFSLECtests ifqa is less than or equal

to n. qa must be of the floating-point type, and the result inqc is of type word. Ifqa has an incompatible

type,qc will be tagged as invalid and a type exception raised.

TheFSxxC operation is only executed ifqa is available and there is no backpressure onqc . Otherwise, the

instruction stalls.

Operation:
OP is one of arithmetic =, <, �:
if(type(qa,qb) == floating-point)

qc qa OP n ? 1 : 0
type(qc) word

else
throw type exception

Exceptions:

Type exception.

Qualifiers:
None.

Notes:
If qa is a NaN, the result is tagged as invalid.

62

BR

BR offset

Description:

BR (unconditional branch) adds the number specified in theoffset field to the incremented program

counter. Execution immediately begins at the newPCvalue; there are no branch delay slots.

Operation:

PC PC + 1
PC PC + offset

Exceptions:

If the destination of thePCis in a protected or invalid page, an exception is thrown.

Qualifiers:
None.

Notes:
None.

63

BRL

BRL offset, qc

Description:
BRL (unconditional branch with link) adds the number specified in theoffset field to the incremented

program counter. Execution immediately begins at the newPCvalue; there are no branch delay slots. The

incremented program counter offset relative to the start of code (be it method, object, or absolute-referenced)

is stored inqc as a word data type; execution stalls ifqc is full and applying backpressure.

TheBRLoperation is only executed if there is no backpressure onqc . Otherwise, the instruction stalls.

Operation:

PC PC + 1
qc PC
PC PC + offset

Exceptions:
If the destination of thePCis in a protected or invalid page, an exception is thrown.

Qualifiers:

None.

Notes:

None.

64

BRZ

BRZ qa, offset, hint

Description:
BRZ(branch if zero) adds the number specified in theoffset field to the incremented program counter if

the value inqa is zero; otherwise, the program counter is just incremented to the next instruction.qa must

be of the word type. Execution immediately begins at the newPCvalue; there are no branch delay slots.

TheBRZoperation is only executed ifqa is available and there is no backpressure onqc . Otherwise, the

instruction stalls.

Operation:

if(type(qa) == word)
if(qa == 0)

PC PC + 1 + offset
else

PC PC + 1

Exceptions:

If the destination of thePC is in a protected or invalid page, an exception is thrown. A type exception is

thrown if the type ofqa is not word.

Qualifiers:

None.

Notes:
The hint field is an implementation-specific 8-bit number that serves as a branch prediction hint. The

semantics ofhint are such that an incorrect branch hint still leads to correct but slower execution. The

actual value ofhint is allowed to have cache-incoherent mutation during run-time as the dynamic hardware

branch-predictor sees fit.

65

BRNZ

BRNZ qa, offset, hint

Description:
BRNZ(branch if not zero) adds the number specified in theoffset field to the incremented program counter

if the value inqa is not zero; otherwise, the program counter is just incremented to the next instruction.qa

must be of the word type. Execution immediately begins at the newPCvalue; there are no branch delay slots.

TheBRNZoperation is only executed ifqa is available and there is no backpressure onqc . Otherwise, the

instruction stalls.

Operation:

if(type(qa) == word)
if(qa != 0)

PC PC + 1 + offset
else

PC PC + 1

Exceptions:

If the destination of thePC is in a protected or invalid page, an exception is thrown. A type exception is

thrown if the type ofqa is not word.

Qualifiers:

None.

Notes:
The hint field is an implementation-specific 8-bit number that serves as a branch prediction hint. The

semantics ofhint are such that an incorrect branch hint still leads to correct but slower execution. The

actual value ofhint is allowed to have cache-incoherent mutation during run-time as the dynamic hardware

branch-predictor sees fit.

66

BRNE

BRNE qa, offset

Description:
BRNE(branch if not empty) adds the number specified in theoffset field to the incremented program

counter ifqa is not empty; otherwise, the program counter is just incremented to the next instruction. The

data inqa is not affected by this instruction. Execution immediately begins at the newPCvalue; there are no

branch delay slots.

Operation:
if(qa != empty)

PC PC + 1 + offset
else

PC PC + 1

Exceptions:

If the destination of thePCis in a protected or invalid page, an exception is thrown.

Qualifiers:
The qualifier is ignored by this instruction;qa is never dequeued.

Notes:
None.

67

BREL

BREL qa

Description:

BREL(unconditional relative branch) adds the number inqa to the incremented program counter.qa must

be of the word type. Execution immediately begins at the newPCvalue; there are no branch delay slots.

TheBRELoperation is only executed ifqa is available and there is no backpressure onqc . Otherwise, the

instruction stalls.

Operation:

if(type(qa) == word)
PC PC + 1 + qa

Exceptions:
If the destination of thePC is in a protected or invalid page, an exception is thrown. A type exception is

thrown if the type ofqa is not word.

Qualifiers:

None.

Notes:
None.

68

JMP

JMP qa, hint

Description:
JMP(unconditional jump) sets the value inPCto the value inqa . Execution immediately begins at the new

PCvalue; there are no branch delay slots.qa must be of type word.

TheJMPoperation is only executed ifqa is available and there is no backpressure onqc . Otherwise, the

instruction stalls.

Operation:
if(type(qa) == word)

PC qa

Exceptions:
If the destination of thePCis in a protected or invalid page, an exception is thrown.

Qualifiers:

None.

Notes:

Thehint field is an implementation-specific 48-bit number that serves as a jump prediction destination hint.

The semantics ofhint are such that an incorrect jump hint still leads to correct but slower execution. The

actual value ofhint is allowed to have cache-incoherent mutation during run-time as the dynamic hardware

jump-predictor sees fit.

69

MOVE

MOVE qa, qc

Description:

MOVE(move) takes the value inqa and puts it intoqc . The exact state of the queues after theMOVE

instruction depends on the @ (copy/clobber) modifiers applied to the queue specifiers.

TheMOVEoperation is only executed ifqa is available and there is no backpressure onqc . Otherwise, the

instruction stalls.

Operation:

qc qa

Exceptions:

An operation exception is thrown if a copy operator is applied to data inqa that is tagged non-copyable. The

result inqc is tagged as invalid, and the original value remains untouched inqa .

Qualifiers:

None.

Notes:

Exact semantics vary according to the use of the @ modifier.

70

MOVECF

MOVECF n, qc

Description:

MOVECF(move floating point constant) takes the 32-bit floating-point constant specified inn, converts it to

the nearest ADAM 64-bit floating point number, and puts the properly typed result intoqc . The exact state

of qc after theMOVECFinstruction depends on the @ (copy/clobber) modifier applied to the queue specifier.

TheMOVECFoperation is only executed if there is no backpressure onqc . Otherwise, the instruction stalls.

Operation:

qc (floating-point) n
type(qc) floating-point

Exceptions:
None.

Qualifiers:

None.

Notes:

Because of the conversion from a 32-bit opcode-stored representation to a 64-bit standard ADAM floating

point representation, the result inqc may exhibit some small roundoff error when compared to the desired

constant.

Exact semantics vary according to the use of the @ modifier.

71

MOVECL

MOVECL n, qc

Description:

MOVECL(move long integer constant) takes the 32-bit constant specified inn, sign-extends it to an ADAM

native 64-bit word, and puts the properly typed result intoqc . The exact state ofqc after theMOVECL

instruction depends on the @ (copy/clobber) modifier applied to the queue specifier.

TheMOVECLoperation is only executed if there is no backpressure onqc . Otherwise, the instruction stalls.

Operation:

qc SEXT(n)
type(qc) word

Exceptions:

None.

Qualifiers:
None.

Notes:
Exact semantics vary according to the use of the @ modifier.

72

MOVECI

MOVECI n, qc

Description:

MOVECI(move packed integer constant) takes the 32-bit constant specified inn, places it in the lower bits of

a packed integer, sets the upper bits of the packed integer to zero, and puts the properly typed result intoqc .

The exact state ofqc after theMOVECIinstruction depends on the @ (copy/clobber) modifier applied to the

queue specifier.

TheMOVECIoperation is only executed if there is no backpressure onqc . Otherwise, the instruction stalls.

Operation:

qc.a 0
qc.b n

type(qc) packed integer

Exceptions:

None.

Qualifiers:

None.

Notes:
Exact semantics vary according to the use of the @ modifier.

73

MOVECS

MOVECS n, qc

Description:

MOVECS(move packed short constant) takes the dual 16-bit packed short constant specified inn, places it in

the lower bits of a packed short, sets the upper bits of the packed short to zero, and puts the properly typed

result intoqc . The exact state ofqc after theMOVECSinstruction depends on the @ (copy/clobber) modifier

applied to the queue specifier.

TheMOVECSoperation is only executed if there is no backpressure onqc . Otherwise, the instruction stalls.

Operation:

qc.a 0
qc.b 0
qc.c n[31:16]
qc.d n[15:0]
type(qc) packed short

Exceptions:
None.

Qualifiers:

None.

Notes:

Exact semantics vary according to the use of the @ modifier.

74

MOVECC

MOVECC n, qc

Description:

MOVECC(move packed unicode character constant) takes the dual 16-bit packed unicode character constant

specified inn, places it in the lower bits of a packed char, sets the upper bits of the packed char to zero, and

puts the properly typed result intoqc . The exact state ofqc after theMOVECCinstruction depends on the @

(copy/clobber) modifier applied to the queue specifier.

TheMOVECCoperation is only executed if there is no backpressure onqc . Otherwise, the instruction stalls.

Operation:

qc.a 0
qc.b 0
qc.c n[31:16]
qc.d n[15:0]
type(qc) packed character

Exceptions:
None.

Qualifiers:

None.

Notes:

Exact semantics vary according to the use of the @ modifier.

75

PACKN

PACKN qa, qb, qc, n

Description:
PACKN(Pack Anything) takes the data inqa and inserts it at a position specified byn into the data fromqb ,

and places the result intoqc . qa must be of type word, andqb must be of a packed integer type. The result

in qc has the same type asqb .

ThePACKNoperation is only executed if bothqa andqb operands are available and there is no backpressure

onqc . Otherwise, the instruction stalls.

Operation:

if(type(qa) == word)
if(type(qb) == packed int)

if(n == 0)
qc.a qa & 0xFFFFFFFF
qc.b qb.b

else
qc.a qb.a
qc.b qa & 0xFFFFFFFF

elif(type(qb) == packed short or packed char)
if(n == 0)

qc.a qa & 0xFFFF
qc.b qb.b
qc.c qb.c
qc.d qb.d

elif(n == 1)
qc.a qb.a
qc.b qa & 0xFFFF
qc.c qb.c
qc.d qb.d

elif(n == 2)
qc.a qb.a
qc.b qb.b
qc.c qa & 0xFFFF
qc.d qb.d

else
qc.a qb.a
qc.b qb.b
qc.c qb.c
qc.d qa & 0xFFFF

else
throw type exception

else
throw type exception

Exceptions:
Type exception.

Qualifiers:

None.

Notes:
None.

76

PACKH

PACKH qa, qb, qc

Description:
PACKH(Pack High Half of Packed Short or Char) takes packed integer data inqa , masks the data and inserts

it into the high half ofqb , and places the result intoqc . qb must be of type packed short or packed char. The

result inqc has the same type asqb .

ThePACKHoperation is only executed if bothqa andqb operands are available and there is no backpressure

onqc . Otherwise, the instruction stalls.

Operation:

if(type(qa) == packed int && type(qb) == packed short or packed char)
qc.a qa.a & 0xFFFF
qc.b qa.b & 0xFFFF
qc.c qb.c
qc.d qb.d

else
throw type exception

Exceptions:

Type exception.

Qualifiers:
None.

Notes:
None.

77

PACKL

PACKL qa, qb, qc

Description:
PACKL(Pack Low Half of Packed Short or Char) takes packed integer data inqa , masks the data and inserts

it into the low half ofqb , and places the result intoqc . qb must be of type packed short or packed char. The

result inqc has the same type asqb .

ThePACKLoperation is only executed if bothqa andqb operands are available and there is no backpressure

onqc . Otherwise, the instruction stalls.

Operation:

if(type(qa) == packed int && type(qb) == packed short or packed char)
qc.a qb.a
qc.b qb.b
qc.c qa.a & 0xFFFF
qc.d qa.b & 0xFFFF

else
throw type exception

Exceptions:

Type exception.

Qualifiers:
None.

Notes:
None.

78

PACKI

PACKI qa, qb, qc

Description:
PACKI (Pack to Packed Integer) takes word data inqa andqb , masks the data and packs it into a packed

integer stored inqc .

ThePACKI operation is only executed if bothqa andqb operands are available and there is no backpressure

onqc . Otherwise, the instruction stalls.

Operation:
if(type(qa,qb) == word)

qc.a qa & 0xFFFFFFFF
qc.b qb & 0xFFFFFFFF

type(qc) packed integer
else

throw type exception

Exceptions:

Type exception.

Qualifiers:
None.

Notes:

None.

79

UNPACK

UNPACK qa, qb, qc

Description:
UNPACK(Unpack) takes a packed integer typeqa and extracts and sign-extends the data at locationqb into

qc . The resultqc is of type word.

TheUNPACKoperation is only executed if bothqa andqb operands are available and there is no backpressure

onqc . Otherwise, the instruction stalls.

Operation:
if(type(qb) == word)

if(type(qa) == packed int)
if(qb == 0)

qc SEXT(qa.a)
else

qc SEXT(qa.b)
elif(type(qa) == packed short or packed char)

if(qb == 0)
qc SEXT(qa.a)

elif(qb == 1)
qc SEXT(qa.b)

elif(qb == 2)
qc SEXT(qa.c)

else
qc SEXT(qa.d)

else
throw type exception

else
throw type exception

Exceptions:

Type exception.

Qualifiers:

None.

Notes:
None.

80

UNPACKC

UNPACKC qa, n, qc

Description:

UNPACKC(Unpack with constant) takes a packed integer typeqa and extracts and sign-extends the data at

locationn into qc . The resultqc is of type word.

TheUNPACKCoperation is only executed ifqa is available and there is no backpressure onqc . Otherwise,

the instruction stalls.

Operation:

if(type(qa) == packed int)
if(n == 0)

qc SEXT(qa.a)
else

qc SEXT(qa.b)
elif(type(qa) == packed short or packed char)

if(n == 0)
qc SEXT(qa.a)

elif(n == 1)
qc SEXT(qa.b)

elif(n == 2)
qc SEXT(qa.c)

else
qc SEXT(qa.d)

else
throw type exception

Exceptions:

Type exception.

Qualifiers:
None.

Notes:

None.

81

FLUSHQ

FLUSHQ qc

Description:

FLUSHQ(Flush Queue) is a special-format instruction, whereqc is interpreted as an immediate constant.

FLUSHQdiscards all values currently in the queue specified by the immediate constantqc . The function

of FLUSHQupon a queue which has mappings to other contexts, be it head or tail mappings, is UNPRE-

DICTABLE. If qc is already empty, nothing happens and execution continues.

Operation:

qc empty

Exceptions:
Throws a mapping exception ifqc has any mappings.

Qualifiers:

None.

Notes:

None.

82

PROCID

PROCID qc

Description:

PROCID(Get Process ID) places the value of the current context ID intoqc . qc is a capability with the

owner bit set. In addition, the read and write bits are set. If the context ID is to be passed to another thread,

care must be taken to set the permissions properly.

ThePROCIDoperation is only executed if there is no backpressure onqc . Otherwise, the instruction stalls.

Operation:

qc context ID

Exceptions:

None.

Qualifiers:
None.

Notes:
None.

83

PTRSIZE

PTRSIZE qa, qc

Description:

PTRSIZE (Get Pointer Size) computes the size of the region of data pointed to by the capability inqa

and places the size, in words, inqc . ThePTRSIZE operation is valid on any capability, regardless of its

permissions. The result inqc is of the word type.

ThePTRSIZE operation is only executed ifqa is available and there is no backpressure onqc . Otherwise,

the instruction stalls.

Operation:

if(type(qa) == capability)
qc sizeof(qa) in words
type(qc) word

else
throw type exception

Exceptions:

Type exception.

Qualifiers:
None.

Notes:

None.

84

CONSUME

CONSUME qa

Description:

CONSUME(Consume Data) reads exactly one piece of data out ofqa and discards it. Ifqa is initially empty,

CONSUMEblocks.

Operation:
while(qa is empty)

stall
if(no @ operator on qa)

dequeue head of qa

Exceptions:
None.

Qualifiers:

None.

Notes:

None.

85

SEMPTY

SEMPTY qa, qc

Description:

SEMPTY(Set if Empty) is a special format instruction, whereqa is interpreted as an immediate constant.

SEMPTYtests to see if the queue specified by the immediate constantqa is empty, and if it is, it places an

integer 1 intoqc . Otherwise, a 0 is written intoqc . The type of the resultqc is word.

Operation:
if((qa & 0x7F) is empty)

qc 1
else

qc 0
type(qc) word

Exceptions:

None.

Qualifiers:

None.

Notes:
None.

86

EEQ

EEQ qa

Description:

EEQ(forcE Empty Queue) is a special format instruction, whereqa is interpreted as an immediate constant.

EEQtests to see if the queue specified by the immediate constantqa is empty, and if it is, it increments the

PC; if not, the PC remains constant and a yielding stall is reported to the scheduler.

Operation:

if((qa & 0x7F) is empty)
pc pc + 1

else
pc pc

Exceptions:

None.

Qualifiers:
None.

Notes:

This instruction complicates the implementation of the processor core. An alternative would be to use

SEMPTY and a BRZ instruction to create a programmatic loop to check for the emptiness of a queue. How-

ever, for the purposes of backward compatibility with an older ISA, it is included in the documentation.

87

RANDOM

RANDOM qc

Description:

RANDOM(Generate Random Number) places a cryptographically secure random integer of type word intoqc .

RANDOMmay be implemented as an external hardware device to the processor. Because 64 bits of entropy

must be collected for eachRANDOMinstruction, it is possible to request random numbers faster than the

processor or device is capable of generating them. In this case, the operation blocks until a random number

becomes available. In order to smooth out demand patterns, the number generating device may queue up

several pre-generated numbers.

TheRANDOMoperation is only executed if there is no backpressure onqc . Otherwise, the instruction stalls.

Operation:

qc random number between �263 and 263 � 1

type(qc) word

Exceptions:
None.

Qualifiers:

None.

Notes:

The exact implementation of theRANDOMfunction should be disclosed in a public fashion before it can be

trusted. More information on cryptographically secure random numbers can be found in Annex D.6 “Random

number generation” of the IEEE 1363-2000 standard and in RFC1750, “Randomness Recommendations for

Security”. A user desiring to verify the randomness properties of theRANDOMinstruction may wish to refer to

Ueli M. Maurer’s “A Universal Statistical Test for Random Bit Generators”,Institute of Theoretical Computer

Science, ETH Z̈urich, 1992, Journal of Cryptology, Vol. 5, No. 2.

88

GETSTAT

GETSTAT qc

Description:

GETSTAT(Get Status Register) copies the contents of the status register intoqc . There are some portions of

the status register that are implementation-specific.qc is of type word.

TheGETSTAToperation is only executed if there is no backpressure onqc . Otherwise, the instruction stalls.

Operation:
qc status register
type(qc) word

Exceptions:
None.

Qualifiers:

None.

Notes:

Please refer to the implementation notes and the architecture specification for the meaning of the status

register bits.

89

SETSTAT

SETSTAT qa

Description:

SETSTAT(Set Status Register) copies the contents ofqa into the modifiable portions of the status register.

There are some portions of the status register that are implementation-specific.qa must be of type word.

TheSETSTAToperation is only executed if there is no backpressure onqc . Otherwise, the instruction stalls.

Operation:
if(type(qa) == word)

status register qa
else

throw type exception

Exceptions:

Type exception.

Qualifiers:
None.

Notes:

Please refer to the implementation notes and the architecture specification for the meaning of the status

register bits. Some of the bits of the status register are read-only and are unaffected bySETSTAT.

90

GETEX

GETEX qc

Description:

GETEX(Get Exception Context ID) places the current exception handler’s context ID intoqc . The permis-

sions on the exception handler ID are set to opaque and owner.

TheGETEXoperation is only executed if there is no backpressure onqc . Otherwise, the instruction stalls.

Operation:
qc Exception Register

type(qc) capability
permissions(qc) opaque, owner

Exceptions:

None.

Qualifiers:
None.

Notes:

None.

91

SETEX

SETEX qa

Description:

SETEX(Set Exception Context ID) sets the current context’s exception handler ID to be the capability inqa .

The operation blocks ifqa is applying backpressure.

Operation:

if(type(qa) == capability)
Exception Register qa

else
throw type exception

Exceptions:
Type exception.

Qualifiers:

None.

Notes:

None.

92

THROW

THROW

Description:

THROW(Throw Soft Exception) causes the current context to be set to the exception handler context and

for the PC to jump to the exception handler’s server code. In addition, the current context ID is saved into

the Exceptioned Context ID register. The user may layer additional conventions on top of the basicTHROW

semantics; for example, the user may require that q127 contain a soft exception ID.

Operation:

PC PC + 1
Exceptioned Context ID context ID
context ID exception handler ID

PC exception handler server code start

Exceptions:
None.

Qualifiers:

None.

Notes:

Note that there is no requirement for a savedPCbecause thePCof the exceptioned context is not overwritten

by the exception handler PC: the context ID is set to the exception handler before the PC is modified.

This is a multi-cycle, variable execution duration instruction.

93

EXTAG

EXTAG qa, qc

Description:

EXTAG(Extract Tag) extracts the tag bits out ofqa and places them intoqc . The tag bits are placed in the

MSB’s of qc and zero-padded to the right. The tag region of a piece of data includes the top 16 bits, whereas

the tag region for a capability includes the top 45 bits. The type of the result inqc is word.

TheEXTAGoperation is only executed ifqa is available and there is no backpressure onqc . Otherwise, the

instruction stalls.

Operation:

if(type(qa) == capability)

qc fqa[79:55],39’b0 g

else qc fqa[79:64],48’b0 g

type(qc) word

Exceptions:
None.

Qualifiers:

None.

Notes:

None.

94

SETTAG

SETTAG qa, qb, qc

Description:
SETTAG(Set Tag) sets the tag of the data inqb to the value of the LSB’s ofqa , and places the result into

qc . This is a very powerful operator, as it can force a literal binary transmutation of data types and change

several important attributes about a piece of data. If the value of the bits inqa corresponds to a capability,

the type ofqb must also be a capability, and the owner bit forqb must be set.qa must be of type word.

TheSETTAGoperation is only executed if bothqa andqb operands are available and there is no backpressure

onqc . Otherwise, the instruction stalls.

Operation:
if(type(qa) == word)

if(type(qb) == capability)
if(!owner(qb))

throw operation exception
else

tags(qb) qa[63:39]
else

if(qa[63] == 1)
throw operation exception

else
tags(qb) qa[63:48]

else
throw type exception

Exceptions:
Operation exception, type exception.

Qualifiers:

None.

Notes:

None.

95

ALLOCATE

ALLOCATE qa, qb, qc

Description:
ALLOCATE(Allocate Capability) creates a capabilityqc of the size nearest to the number of words specified

in qb . The address of the capability and the increment-only bit are set to restrict the accessible portion of the

capability to exactly the size specified inqb . qb must be of type word. If the allocation fails,qc is returned

as an invalid capability, and an out of memory exception is thrown.qa contains an allocation metric that

guides where the allocated memory should be placed in the system.qa must be of type packed char or a

capability. Ifqa is a capability, the system attempts to allocate the new capability close to the capability in

qa .

TheALLOCATEoperation is only executed ifqa is available and there is no backpressure onqc . Otherwise,

the instruction stalls.

Operation:
if(type(qb) == word && (type(qa) == packed char || (type(qa) == capability)))

if(qa words available)

qc capability of size qa bytes
else

qc invalid capability

throw out of memory exception
else

throw type exception

Exceptions:

Out of memory exception, type exception.

Qualifiers:
None.

Notes:
This instruction may take a variable number of cycles to complete. This instruction is a “lazy” instruction.

The format of the allocation metric is implementation dependant. The current implementation scheme calls

for the packed char to contain the following sixteen-bit char values, from MSB to LSB: ignored, ignored,

expected communication frequency, desired latency.

96

ALLOCATEC

ALLOCATEC qa, n, qc

Description:

ALLOCATEC(Allocate Capability, Size in Constant Field) creates a capabilityqc of the size nearest to the

number of words specified inn. The address of the capability and the increment-only bit are set to restrict

the accessible portion of the capability to exactly the size specified inn. If the allocation fails,qc is returned

as an invalid capability, and an out of memory exception is thrown.qa contains an allocation metric that

guides where the allocated memory should be placed in the system.qa must be of type packed char or of

type capability. Ifqa is a capability, the system attempts to allocate the new capability close to the capability

in qa .

TheALLOCATECoperation is only executed if there is no backpressure onqc . Otherwise, the instruction

stalls.

Operation:

if(type(qa) == packed char || type(qa) == capability)

if(n words available)
qc capability of size n bytes

else
qc invalid capability
throw out of memory exception

else
throw type exception

Exceptions:

Out of memory exception, type exception.

Qualifiers:
None.

Notes:
This instruction may take a variable number of cycles to complete. This instruction is a “lazy” instruction.

The format of the allocation metric is implementation dependant. The current implementation scheme calls

for the packed char to contain the following sixteen-bit char values, from MSB to LSB: ignored, ignored,

expected communication frequency, desired latency.

97

MML

MML qa, qb

Description:
MML(Map Memory Load) maps the queue number specified inqa to a load address queue, and maps the

return data of the load into the queue number specified inqb . qa andqb must be of type word.

The memory subsystem expects that the first address entered into a memory address queue be the access ca-

pability, and that subsequent entries to the load address queue be offsets on the initial capability. Enqueueing

the initialization capability does not cause the memory subsystem to return a load value. If a capability is

sent to the memory subsystem following the initialization capability, the new capability subsumes the old

one; again, no load value is returned in response to this load capability being sent.

This operation stalls until bothqa andqb contain a value.

Operation:

if(type(qa,qb) == word)
MAP (qa & 0x7F) to memory load address queue
MAP memory load return data queue to (qb & 0x7F)

else
throw type exception

Exceptions:

Type exception.

Qualifiers:
None.

Notes:
This instruction may take a variable number of cycles to complete the mapping, but thePC is allowed to

increment in one cycle. This does not lead to incorrect operation unless the user unmaps the memory map-

ping instruction and then immediately re-maps the memory mapping. Users should avoid unmapping and

remapping memory maps using the same queues within the same context. Note that it is perfectly safe to

re-initialize an existing memory mapping by sending a new capability to the address queue.

When unmapping a memory mapped queue pair, the user is responsible for unmaping both the address and

the data queue. There is nothing fundamentally incorrect about unmapping one queue only; however, it may

lead to confusion if the queue mapping is re-used, and the garbage collector will not de-allocate memory that

has even a partial mapping to its capability.

98

MMS

MMS qa, qb

Description:
MMS(Map Memory Store) maps the queue number specified inqa to a store address queue, and maps the

queue number specified inqb to a store data queue.qa andqb must be of type word.

Data and addresses may be enqueued at differing times and rates, but the invariant is that the store blocks

until both queues have at least one element in them, and that data and address pairs are strictly correlated by

their relative order in the queues.

The memory subsystem expects that the first address entered into a memory address queue be the access

capability; this first access isnot matched with a data element in the store data queue. Subsequent addresses

are then interpreted as offsets to the initial access capability and are paired with data values in the store data

queue.

This operation stalls until bothqa andqb contain a value.

Operation:
if(type(qa,qb) == word)

MAP (qa & 0x7F) to memory store address queue
MAP (qb & 0x7F) to memory store data queue

else
throw type exception

Exceptions:
Type exception.

Qualifiers:

None.

Notes:

This instruction may take a variable number of cycles to complete the mapping, but thePC is allowed to

increment in one cycle. This does not lead to incorrect operation unless the user unmaps the memory map-

ping instruction and then immediately re-maps the memory mapping. Users should avoid unmapping and

remapping memory maps using the same queues within the same context. Note that it is perfectly safe to

re-initialize an existing memory mapping by sending a new capability to the address queue.

When unmapping a memory mapped queue pair, the user is responsible for unmaping both the address and

the data queue. There is nothing fundamentally incorrect about unmapping one queue only; however, it may

lead to confusion if the queue mapping is re-used, and the garbage collector will not de-allocate memory that

has even a partial mapping to its capability.

99

EXCH

EXCH qa, qb, qc

Description:
EXCH(Declare Exchange Tuple) marks the queues numbers specified inqa , qb andqc as a memory ex-

change tuple.qa is set to be the address queue,qb is set to be the data in queue, andqc is set to be the data

out queue. All ofqa , qb , andqc are interpreted to be immediate constants. The exchange tuple must be

initialized by moving a capability intoqa prior to moving an address offset intoqa .

Once the tuple has been initialized with an address value, the next piece of data moved intoqb is exchanged

atomically with the contents of memory at the specified address, and the contents of the memory location

prior to the exchange is placed inqc .

This operation is guaranteed by the memory system to be atomic at the memory side; however, no other

relative timings are guaranteed.

TheEXCHmapping remains in effect until it is undone with anUNMAPQinstruction. The user must unmap

all three mappings.

Operation:

MAP qa to atomic memory address queue
MAP qb to atomic memory incoming data queue

MAP qc to atomic memory return data queue

Exceptions:

Type exception and exchange exception.

Qualifiers:

None.

Notes:
This instruction may take a variable number of cycles to complete.

100

SPAWN

SPAWN qa, qb, qc

Description:
SPAWN(Spawn) starts a new thread by allocating space for the thread, creating an entry in the thread scheduler

for the thread withPCset to the value inqb , and returning the thread ID (which is also a capability to thread’s

data) inqc . The permissions of the thread ID capability are set to opaque and not owner.qa contains a

spawning metric that is used to guide the run-time as to where the thread should be spawned. Ifqa is a

capability, the system attempts to allocate the new thread close to the capability inqa .

qa must be of type packed char or type word, andqb must be of type word.

TheSPAWNoperation is only executed ifqa is available and there is no backpressure onqc . Otherwise, the

instruction stalls.

Operation:

if(type(qb) == word && (type(qa) == packed char || (type(qa) == capability)))

qc new thread capability
if(qc == invalid)

throw out of memory exception
else

create thread scheduler entry (new thread ID, PC = qa)
else

throw type exception

Exceptions:

Type exception, Out of memory exception.

Qualifiers:
None.

Notes:

This instruction may take a variable number of cycles to complete. This is a “lazy” instruction.

The format of the spawning metric is implementation dependant. The current implementation scheme calls

for the packed char to contain the following sixteen-bit char values, from MSB to LSB: expected children,

memory requirement, computation requirement, desired latency.

101

SPAWNL

SPAWNL qa, qb, qc

Description:
SPAWNL(Load Code and Spawn) starts a new thread by allocating space for the thread, loading its code

specified inqb into code space, and creating an entry in the thread scheduler for the thread withPCset to the

value inqa , and returning the thread ID (which is also a capability to thread’s data) inqc . The permissions

of the thread ID capability are set to opaque and not owner. The size of the space to be allocated for the thread

is encoded in anOSIZE opcode that should be the first instruction of the new thread.

qa must be of type word, andqb must be a capability to a character array that describes a universal locator

for the code resource.

TheSPAWNLoperation is only executed if bothqa andqb operands are available and there is no backpressure

onqc . Otherwise, the instruction stalls.

Operation:
if(type(qa) == word && type(qb) == capability)

load code specified by qb into code space

qc capability of size indicated in OSIZE opcode at address in qa
if(qc == invalid)

throw out of memory exception
else

create thread scheduler entry (new thread ID, PC = qa)
else

throw type exception

Exceptions:

Type exception, Out of memory exception.

Qualifiers:
None.

Notes:
This instruction may take a variable number of cycles to complete.

102

SPAWNC

SPAWNC qa, n, qc

Description:

SPAWNC(Spawn with PC-constant offset) starts a new thread by allocating space for the thread, creating an

entry in the thread scheduler for the thread withPCset to the value ofPC+ 1 + n, and returning the thread

ID (which is also a capability to thread’s data) inqc . The permissions of the thread ID capability are set to

opaque and not owner. The size of the space to be allocated for the thread is encoded in anOSIZE opcode

that should be the first instruction of the new thread.qa contains a spawning metric that is used to guide the

run-time as to where the thread should be spawned. Ifqa is a capability, the system attempts to allocate the

new capability close to the capability inqa .

TheSPAWNCoperation is only executed if there is no backpressure onqc . Otherwise, the instruction stalls.

Operation:
if(type(qa) == packed char || type(qa) == capability)

qc capability of size in OSIZE opcode at (n + PC + 1)

if(qc == invalid)
throw out of memory exception

else
create thread scheduler entry (new thread ID, PC = n + PC + 1)

else
throw type exception

Exceptions:
Out of memory exception and type exception.

Qualifiers:

None.

Notes:

This instruction may take a variable number of cycles to complete. This is a “lazy” instruction.

The format of the spawning metric is implementation dependant. The current implementation scheme calls

for the packed char to contain the following sixteen-bit char values, from MSB to LSB: expected children,

memory requirement, computation requirement, desired latency.

103

MAPQ

MAPQ qa, qb, qc

Description:
MAPQ(Map Queue) is a special-format instruction.qa is actually interpreted as an immediate constant: it

specifies the queue number in the current context that is to be mapped.MAPQdoes not actually read or modify

the contents ofqa in any way. The copy/clobber modifier has no effect on the value ofqa in this case.qb

specifies the queue number to read for the queue number of the destination mapping, andqc specifies the

queue number to read for the destination context ID.

TheMAPQoperation is only executed if bothqb andqc operands are available.

Operation:
if(type(qb) == word && type(qc) == capability)

map queue ‘‘qa’’.tail in current context to
queue ((qb & 0x7F) � 7).head in context qc

else
throw type exception

Exceptions:
Type exception.

Qualifiers:

None.

Notes:
The odd format of this instruction is an artifact of backward compatibility with an earlier version of the

instruction set. This instruction may be represented inside the hardware implementation in a more typical

fashion and require the assembler to do a simple format translation. This instruction may take multiple cycles

to complete.

104

MAPQC

MAPQC qa, qb, qc

Description:
MAPQC(Map Queue with Destination as Constant) is a special-format instruction.qa andqb are actually

interpreted as immediate constants: they specify the queue number in the current context and the destination

queue number, respectively, that is to be mapped.MAPQCdoes not actually read or modify the contents of

qa or qb in any way. The copy/clobber modifier has no effect on the value ofqa andqb in this case.qc

specifies the queue number to read for the destination context ID.

TheMAPQCoperation is only executed if theqc operand is available.

Operation:
if(type(qc) == capability)

map queue ‘‘qa’’.tail in current context to
queue ‘‘qb’’.head in context qc

else
throw type exception

Exceptions:
Type exception.

Qualifiers:

None.

Notes:
The odd format of this instruction is an artifact of backward compatibility with an earlier version of the

instruction set. This instruction may be represented inside the hardware implementation in a more typical

fashion and require the assembler to do a simple format translation. This instruction may take multiple cycles

to complete.

105

MAPSQ

MAPSQ qa, qb

Description:
MAPSQ(Map Queue Source) is a special-format instruction.qa andqb are actually intepreted as immediate

constants.MAPSQcreates a mapping such that every element enqueuedby the network interfaceinto the

queue specified in the immediate constantqa also enqueues the context ID of the data’s source into the queue

specified by the immediate constantqb . The arrival of data from the network interface in the queue specified

by qa is guaranteed to be simultaneous with the arrival of the context ID in the queue specified byqb . The

resulting type of the IDs inqb are capability, with the opaque bit set and the owner bit cleared.

Operation:

map incoming data source ID of queue (qa & 0x7F) to (qb & 0x7F)

Exceptions:
None.

Qualifiers:

None.

Notes:
This instruction may take a variable number of cycles to complete.

Note that data arriving inqa via local operations do not causeqb to have the source enqueued; thus, it is not

recommended to shareqa as both a target for local and remote operations.

106

MAPDROP

MAPDROP qa

Description:

MAPDROP(Set Mapping to Drop Mode) is a special-format instruction whereqa is interpreted as an imme-

diate constant.MAPDROPsets the mode of the mapping of the queue number specified by the immediate

constantqa to “drop” mode. In this mode, backpressure on the queue causes data to be dropped instead of

stalling the context. This is particularly useful when implementing pure streaming operators on real-time

datatypes such as video or audio.

Operation:

set mode of queue (qa & 0x7F) to drop mode

Exceptions:

None.

Qualifiers:

None.

Notes:
This instruction may take a variable number of cycles to complete.

107

UNMAPQ

UNMAPQ qa

Description:

UNMAPQ(Unmap A Queue) is a special format instruction, in thatqa is interpreted as an immediate constant.

UNMAPQresets the mapping of the queue specified by the immediate constantqa to the default (current

context ID). Care should be taken to guarantee that the specified queue is empty before issuing this instruction,

otherwise left-over data that may be in the queue when this instruction retires will never be delivered to its

destination.

Operation:
set the mapping of queue (qa & 0x7F) to the current context ID

Exceptions:
None.

Qualifiers:

None.

Notes:

This instruction may take a variable number of cycles to complete.

When unmapping a memory mapped queue pair, the user is responsible for unmaping both the address and

the data queue. There is nothing fundamentally incorrect about unmapping one queue only; however, it may

lead to confusion if the queue mapping is re-used, and the garbage collector will not de-allocate memory that

has even a partial mapping to its capability.

108

PARCEL

PARCEL qa, qb, qc

Description:
PARCEL(Parcel out a Capability) takes a capability inqa and attempts to create a sub-capability with the

address and tags described inqb . The result is placed inqc . qa must be a capability,qb is a word type,

and the resultqc is a capability. The format of the sub-capability address and tag specifier is 15 bits of tags

followed by a 1 bit increment-only field, followed by a 35 bit address field. The unused bits to the left are

ignored.

35 bit address, word aligned

primary data 64 bits

15 bits base/
bounds

inc-only

Figure A-1:qb format for thePARCELinstruction

If the capability described byqb is outside the bounds of the given capability inqa , an operation exception

is thrown and the result inqc is invalid.

ThePARCELoperation is only executed if bothqa andqb operands are available and there is no backpressure

onqc . Otherwise, the instruction stalls.

Operation:
if(type(qa) == capability && type(qb) == word)

qc sub-capability of qa described by qb
else

throw type exception

Exceptions:

Type exception and operation exception.

Qualifiers:
None.

Notes:
This instruction may take a variable number of cycles to complete.

109

LDCODE

LDCODE qa, qc

Description:

LDCODE(Dynamically Load Code) takes a capability inqa which contains a character array that names a

code object and its path, attempts to load it into code memory, and returns the absolutePCaddress of the

code as a word inqc . A failure to complete this operation causes a code load exception to be thrown andqc

to be invalid.

(Need to determine if the return should be aPCvalue, or if it should be a context ID to an object server that

was started...)

TheLDCODEoperation is only executed ifqa is available and there is no backpressure onqc . Otherwise,

the instruction stalls.

Operation:
if(type(qa) == capability)

if(qa.permissions == read, not opaque, valid)
load code described by character array in qa
qc PC of code entry point

if(tags(qc) == invalid)
throw code load exception

else
throw operation exception

else
throw type exception

Exceptions:

Type exception, operation exception, and code load exception.

Qualifiers:
None.

Notes:
This instruction may take a variable number of cycles to complete.

110

OSIZE

OSIZE n

Description:

OSIZE (Object Size Directive) is a compiler directive that uses the “hint” opcode format to inform ADAM

how large a region needs to be allocated for a particular thread object. The size of the region to allocate in

words is indicated inn. This opcode may be located anywhere, but it only has meaning when it is in the entry

point instruction sequence for an object’s initializer code. When executed, this instruction does nothing to

the machine state except increment thePC.

Operation:
PC = PC + 1

Exceptions:

None.

Qualifiers:
None.

Notes:

None.

111

HINT

HINT t,hint

Description:
HINT (Compiler Hint) is a hint from the compiler or programmer to the ADAM runtime system. AHINT

instruction has no effect on the ADAM machine state except for incrementing thePC; however, it may have

a profound impact upon the OS and/or management coprocessor.

The type of hint is encoded in thet field, and the actual value of the hint is encoded in thehint field. The

valid hint types are TBD, but they fall into two broad categories: machine specific and machine independent.

Machine specific hints include data placement directives. Machine independent hints include thread swap

hints, prefetch directives, and migration hints. A hint with an unrecognized hint type is ignored.

An incorrect hint never leads to incorrect program results; an incorrect just leads to poor performance.

Operation:

PC = PC + 1

Exceptions:
None.

Qualifiers:

None.

Notes:

None.

112

NOP

NOP

Description:

NOP(No Operation) ANOPinstruction has no effect on the ADAM machine state except for incrementing

thePC.

Operation:
PC = PC + 1

Exceptions:

None.

Qualifiers:
None.

Notes:

None.

113

114

Bibliography

[BGKH00] Jeremy H. Brown, J.P. Grossman, Tom Knight, and Andrew Huang. A capability representation

with embedded address and near-exact object bounds. InSubmitted to ASPLOS 2000, 2000.

[Ste85] David Stevenson. Ieee standard for binary floating-point arithmetic. ANSI/IEEE standard 754-

1985, August 1985.

115

