REC FPGA Seminar IAP 1998

Session 3:
Advanced Design Techniques, Optimizations, and Tricks

Outline

- Focus on Xilinx 4000E-style FPGA (one of the most common FPGAs)
- Thinking FPGA
- Black box optimizations
- Counter design
- Distributed arithmetic
- One-hot state machines
- Miscellaneous tricks

Thinking FPGA

- When starting a design, consider the implementation technology
- Architect your design to fit into an FPGA
- memory granularity ($16 \times 1,16 \times 2,32 \times 1$)
-4 or 5 input logic functions $/ 4+4$ and 2-1 mux
- fewer inputs per logic function is wasteful
- more inputs is slower
- routing limitations
- limited number of tristate buffers and longlines
- limited number of clock buffers
- I/O cell features
- flip flops in I/O cells
- special delays and slew rate control

"Black Box" Optimization

- Most basic of FPGA design optimizations

- Essentially performing manual hardware mapping

- Procedure:

- break down design into combinational logic black boxes
- inputs and outputs with stuff inbetween
- arbitrarily complex logic inside the box, but CLB doesn't care since it is a LUT anyways
- adjust the "level" of black-boxing until you have mostly 4 or 5 input functions or $4+4$ input and 2-1 mux functions

"Black Box" Example

- ALU
- implements a 32-bit wide 2-input AND, OR, XOR, pass-through
- Example worked through on chalkboard
- obvious implementation
- 3 32-bit wide 2-input devices feeding into a mux or a tri-state bus
- optimized implementation
- 32 4-input devices: 66% or more savings in area; roughly 30 50% speed increase

Counter Design

- Counters have many design options depending upon the application
- basic ripple counter
- ripple-carry
- lookahead-carry
- Johnson (mobius)
- linear feedback shift register (LFSR)

- Ripple carry counter is not recommended in FPGA designs due to their asynchronous nature
- However, ripple carry counters are very efficient in terms of area
- $\mathrm{k} * \mathrm{O}(\mathrm{n})$ delay growth with the number of bits, k is large (poor performance)
- Max counting states is 2^{N}

Ripple-Carry Counter

Count out

- Synchronous design
- $\mathrm{k}^{*} \mathrm{O}(\mathrm{n})$ delay growth with n bits, k small
- this is the basic counter provided in Xilinx libraries
- good area efficiency
- Max counting states is 2^{N}
- Loads or sync clears come for free in terms of area and speed

Carry-Lookahead counter

- Like ripple-carry but carry input to $\mathrm{n}^{\text {th }}$ counter element is computed using a full sum-of-products of the previous ($\mathrm{n}-1$) bits counter state
- Can have near $O(1)$ delay growth up to a few bits
- Good performance
- Requires a lot of gates
- Combinations of carry-lookahead and ripple-carry can be used to get the best of both worlds
- Max counting states is 2^{N}

Johnson or Mobius Counter

- $\mathrm{O}(1)$ delay growth for most applications
- Well-suited for clock division or count-limit only applications
- Non-binary counter
- Counts to $2 * \mathrm{n}$, where n is the number of flip flops
- Excellent area and speed characteristics
- Near toggle-rate speeds

LFSR Counters

- $\mathrm{O}(1)$ delay growth for most applications
- non-binary counter
- $2^{\mathrm{N}}-1$ states in a pseudorandom sequence
- excellent area and speed characteristics
- near toggle-rate speeds
- ideal for applications where count sequence is irrelevant (FIFO, timers)

LFSR application

- FIFO application

- Count sequence doesn't matter
- just need to address unique memory locations
- last count value and half-full count values can be predetermined and logic created to detect these conditions
- Saves area, increases performance
- no carry look-ahead structures, $\mathrm{O}(1)$ delay growth with increasing FIFO depth

Distributed Arithmetic

- Parallel multipliers are expensive to implement in FPGAs
- requires very wide logic functions or the use of carrychains
- hardware and delay growth $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- Distributed arithmetic serializes multiplies using partial products
- partial products can be computed in parallel
- serialized multiplies fit well into FPGA architectures
- can achieve same throughput as parallel multiplier silicon macros but with longer latency

Distributed Arithmetic

- DA takes advantage of associative and commutative properties of addition

Digit nomenclature: $A=a_{n} a_{n-1} \ldots a_{2} a_{1}$
In base 10 :
$A * B=P_{n}+P_{n-1}+\ldots P_{2}+P_{1}$ where $\mathrm{P}_{\mathrm{n}}=A * \mathrm{~b}_{\mathrm{n}} * 10^{\mathrm{n}-1}$
So $42 * 121=42 * 1 * 100+42 * 2 * 10+42 * 1 * 1$
In base 2:
$A * B=P_{n}+P_{n-1}+\ldots P_{2}+P_{1}$ where $P_{n}=A * b_{n} * 2^{n-1}$
So $101 * 1101=(101 * 1) \ll 3+(101 * 1) \ll 2+(101 * 0) \ll 1+(101 * 1) \ll 0$
multiply operator breaks down to AND operation in one-digit binary; be careful of sign extensions for signed numbers!

Distributed Arithmetic

- Looking at the relation
$101 * 1101=(101 * 1) \ll 3+(101 * 1) \ll 2+(101 * 0) \ll 1+(101 * 1) \ll 0$
- One sees a basic functional unit- the scaling multiply. This, combined with an accumulator and bit-serial input stream (via "time skew buffer"), is the essence of the DA multiplier
- Note that the DA implementation discussed here works best for constant * variable expressions, which is ideally suited for applications such as convolutions and DSP filters
- replace the $\left(\mathrm{A}^{*} \mathrm{~b}_{\mathrm{n}}\right)$ multiply kernel by a lookup-table instead of several AND gates
- LUTs in some architectures are more efficient than AND gates
- Time to compute $=$ number of bits in input * time to do scaling multiply

Distributed Arithmetic

- Implementation for variable $* \mathrm{C}_{0}$; computes result in N clock cycles
- diagram courtesy Xilinx

Distributed Arithmetic

- so what?
- the real power of DA comes in when you try to do multiple-tap FIR filters

$$
\mathrm{y}[\mathrm{n}]=\sum_{\mathrm{x}[\mathrm{k}]} * \mathrm{~h}[\mathrm{n}-\mathrm{k}]
$$

$\mathrm{y}[1]=\mathrm{x}[0] * \mathrm{~h}[1]+\mathrm{x}[1] * \mathrm{~h}[0]$
Example: 101 * $011+110$ * 100
$=(101 * 0) \ll 2+(101 * 1) \ll 1+(101 * 1) \ll 0+$ $(110 * 1) \ll 2+(110 * 0) \ll 1+(110 * 0) \ll 0$

$((101 * 1)+(110 * 0)) \ll 0$

Distributed Arithmetic for a 3-Tap Filter

- Partial Products of equal weight are added together before being summed to next higher partial product weight.
\longleftarrow - Sign Extension
(slide courtesy Xilinx)

Distributed Arithmetic

(slide courtesy Xilinx)

Distributed Arithmetic

- $\mathrm{kO}\left(2^{\mathrm{n}}\right)+\mathrm{jO}(1), \mathrm{k}$ is relatively small (for area)
- very close to $\mathrm{O}(1)$ performance scaling
- DA can be parallelized and pipelined to gain even more performance
- Each bit can have its own LUT and adder
- All bits computed in parallel
- One result per clock cycle max throughput

Distributed Arithmetic

- Performance
- Serial Distributed Arithmetic (SDA), 10-tap FIR
- 7.8 Msamp/s for 8 bit samples @ 42 CLBs
- 4.1 Msamp/s for 16 bit samples @ 50 CLBs
- old numbers; probably 50% faster now
- Parallel Distributed Arithmetic (PDA), 8-tap FIR
- 50-70 Msamp/s for 8 bit samples @ 122 CLBs
- pipelined, hand-optimized
- For reference, the XC4008E has 324 CLBs (18×18 array)

One-Hot State Machines

- Conventional state machines use $\log _{2}$ (states) bits to implement function
- output is decoded from state number
- next state is a combinational function of states
- state transition rate limited by state number decoding and next state logic delays
- One-hot state machines use as many bits as there are states to implement function
- only one flip flop storing " 1 " at any time
- output is decoded as an OR of appropriate state FFs
- state transition rate limited only by next state logic delays, which in many cases is zero

Miscellaneous Tricks

- Tri-state mux
- saves on area, especially for wide muxes
- may have better or worse performance depending on architecture and device characteristics
- not shown in illustration is decoder for tri-state buffers

Miscellaneous Tricks

- Use IOBs to register inputs
- gives faster setup/hold times (eliminates routing delays from setup time)
- introduces additional latency
- can save on logic array flip flop usage
- Inverters come for free in most architectures
- Use longlines for timing-critical signals
- use sparingly since this is a precious resource in Xilinx 4K architectures
- all wires in Altera "Fast Track" architecture are longlines so routes are always "fast"
- Use pipeline stages to improve pin-locked routing in Altera 8 K designs
- When you can afford it, pipeline your design
- latency versus clock speed tradeoff
- Double-wide half-rate logic (area versus speed)

